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ABSTRACT 

Chaos is the word used to represent aperiodic oscillations , apparently random 
behavior appearing in a system not subject to stochastic perturbation but entirely 
governed by a deterministic dynamic law. It is intimately related to periodic oscillation, 
and periodicity may decompose to chaos when some varying parameter constraining an 
oscillatory system crosses a critical value. The resulting complex chaotic behavior may 
be regarded as periodic but with a repetition time approaching infinity. Indeed, one 
of the major routes from periodicity to chaos involves a repetitive doubling of the period 
as the bifurcation parameter is varied. 

INTRODUCTION 

While the classical "phenomenological" definition of the term "chaos" means 
absence of order and unpredictability, the modern definition of chaos is based on non­
linear mathematics whose principles were anticipated during the late 19th century by 
Poincare , but made mathematically accessible by Lorenz in 1963 in a paper in the 
Journal of Atmospheric Sciences with the title "Deterministic nonperiodic flow "(2). 
Today, chaos is defined..as unforeseen behavior in a deterministic system or to say it in a 
■more colloquial form :■ "chaos is -apparently lawless behavior totally ruled by 
(deterministic) laws (3)". In 1987 Skarda and Freeman (4) brought the definition down 
to one phrase when they described chaos a3 "pseudorandom noise". Generally the word 
chaos refers to low-dimensional aperiodic signals , .while the term noise is used to 
describe behavior resulting from very many degrees of freedom (3). The amplitudes 
and/or periods of the individual cycles of a chaotic behavior look to be random and are 
unpredictable and irreproducible over an extended period of time. A chaotic system will 
remain apparently noisy regardless of how well experimental conditions are controlled, 
However a chaotic behavior results from a quite ordinary deterministic dynamic law and 
has considerable order related to the presence of a so-called strange attractor that 
attracts trajectories in the same way as do simpler attractors such as steady state or limit 
cycle. Order is present because a chaotic waveform stays within a finite region in phase 
space in the close neighborhood of the strange attractor (3). 
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The reason why oscillatory behaviors are so common in biochemical biological 
systems stems from their regulatory properties, which were developed and selected in the 
course of evolution. Positive as well as negative regulatory feedback provide a source of 
nonlinearity which, in conjunction with cooperative processes, gives rise to instabilities 
associated with oscillatory behavior. Such a source of nonlinearity due to regulatory 
feedback is lacking in chemical systems, which are not subjected to evolutionary 
pressure < However, this does not rule out the existence of nonlinear, activating or 
inhibitory processes in chemical kinetics, but these processes are uncommon and remain 
"gratuitous" as they do not have any physiological role (1). Besides periodic behavior, 
other, more complex oscillatory phenomena have been identified and increasingly studied 
in recent years. Among these phenomena are cornp1 ■ periodic oscillations (bursting 
oscillation) and aperiodic oscillations (chaotic or strange non-chaotic oscillations) .From 
a mechanistic point of view, two major routes leading to bursting and strange oscillations 
have been identified (6). These two major types of complex oscillations arise either from 
the periodic forcing of an oscillatory system, or from the interaction of at least two 
instability generating mechanisms within the same system. In contrast to the former 
scenario, which has been followed in many experimental and theoretical studies devoted 
to chaos in biology, particularly in biochemical and neurobilogical system (7,8) chaos 
obtained following the second route is autonomous as it occurs in the absence of 
periodic forcing. 

The unpredictability of a chaotic behavior results because trajectories starting from 
arbitrarily very close initial conditions diverge . The measure of this divergence is the 
Lyapounov exponent, The fundamental mathematical definition of a chaotic system is 
one with at least a positive Lyapounov exponent ( 4,5 ). This definition and similar 
measures can be calculated for an experimental waveform, but practical problems often 
arise that cloud their interpretation. Chaos is thus usually identified in an experimental 
system or simulation by construction of sorts of maps (e.g. Poincare maps) and by 
investigation of the route from periodicity to aperiodicity. 

Although it is also encountered in mechanical , physical , chemical and 
electrochemical systems, rhythmic bqhavior can be viev/ed as a basic property of living 
organisms. Oscillations indeed occur at all levels of biological'organization (5), with 
periods ranging from milliseconds (neurons) to seconds (cardiac cells), minutes 
(oscillatory enzyme) , hours (pulsatile hormone secretion), 24 h. (Orcadian rhythms), 
weeks (ovarian cycle) and years (circannual rhythms, epidemiological processes and 
predator-prey interaction in ecology). 
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I- Oscillations of Biochemical Systems 
The number of experimentally observed oscillations in biochemical systems did not 

significantly change during the decade following 1975, when cyclic AMP (c-AMP) 
oscillations were observed in the slime mold Dictyostelhim discoidens (9). Some ten 
years before, around 1965, oscillations were demonstrated in glycolysis, first in intact 
yeast cells and then in yeast (and later muscle) extracts (10-14). Around the same time 
oscillations are also found in the peroxidase reaction (15) and in mitochondria (12, 16). 
Studies of the latter oscillations were, however, not pursued much beyond their initial 
characterization oscillation were also found in acetylcholinesterase acetylcholine system 

In 1985 (18) , oscillations in intracellular ca** were added to the list of periodic 
phenomena observed at the cellular level (19-22). These widespread oscillation in 
cytosolic ca"1"1" differ from those involving voltage-dependent membrane conductances in 
electrically excitable cells. 

Recent experimental advances have thrown light on the oscillator which controls the 
onset of mitosis in eukaryotic ceils. Evidence which has accumulated in the last few years 
points to the existence of a continuous biochemical oscillator underlying the cell-division 
cycle in embryonic cells (23). 

The experimental and theoretical studies of the most important examples of periodic 
and/or aperiodic behavior in biochemical systems will be discussed in this section. 

1-1 The Peroxidase - Oxidase Reaction 

The reaction in question is the peroxidase-oxidase (PO) reaction, which is the 
oxidation of organic electron donors by molecular oxygen, catalyzed by the enzyme 
horseradish perioxldase when this reaction takes place in a flow system with reduced 
nicotinamide adenine diuucleotide (NADH) as the reactant, the concentrations of 
reactants (oxygen and NADH) as well as some enzyme intermediates can be seen to 
oscillate with periods ranging from several minutes to about an hour, depending on the 
experimental condition. 

Yamazaki. and co-workers discovered (15) in 1965 that the perioxidase-catalyzed 
oxidation of NADH occurs via damped oscillations when oxygen is supplied 
continuously by bubbling a mixture of oxygen and nitrogen through the reaction mixture. 
A very similar system, where the bubblmg of oxygen through the solution is replaced by 
diffusion through the gas/liquid interface from a gas head space, was shown to exhibit 
bistab3ity, Le. the existence of two simultaneously stable steady states for the same 
oxygen concentration in the gas phase,(24) . Temporary perturbations in the oxygen 
concentration in the gas phase could induce reversible switches from one steady state to 
the other. The bistability phenomenon is thought to be due to inhibition of the enzyme by 

Degen showed(25) somewhat later (1969) that damped oscillations also could be 
obtained using the substrates dihydroxyfiimaric acid and indoleacetic acid instead of 
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NADHL The oscillations were accompanied by measurable chemiluminescence. "He 
chemiluminescence was asciibed to free-radical intermediates and taken as evidence of 
the presence of autocatalysis in the reaction mechanism 

Sustained oscillations in the PO reaction were first obtained by Nakamnra et aL (26) 
using NADPH as the substrate; NADPH was regenerated from the oxidized form 
(NADP*) by ghicose-6-phosphate and ghicose-6-phosphate dehydrogenase. Sustained 
oscillations were found only when the modifiers 2,4-dichloiphenol (DCP) and methylene 
blue (MB) were present, Olsen and Degn later reported sustained oscillations (27) with a 
constant injEusion of NADH, thus demonstrating that ghicose-6-phosphate 
dehydrogenase was unnecessary to sustain the oscillations (See Fig. 1). However, these 
authors found that the presence of DCP (and, peihaps,MP) were critical. Olsen and 
Degn (27) in 1978 provided further evidence that the oscillatory behavior is more likely 
due to autocatalysis than to substrate inhibition by oxygen. 

Fig. (1) Oscillatory behavior in the peroxidase-NADH-Oj reaction [ from LJE. Olsen and H. 
Degn i Biocfaim. Biophys. Acta , 523 , P 321 (1978)} 
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Observations ofchaosx Olsen and Degn observed in 1977 that the waveform of the 
PO oscillations depends strongly on the concentration of peroxidase (28), Simple 
periodic oscillations with period of about 5 min were obtained at enzyme concentrations 
of about 1 |iM, whereas bursting oscillations with periods of up to 60 nun were seen at 
enzyme concentration below 0.5 |jM. Tie oscillations were aperiodic and irregular at 
enzyme concentration slightly above 0.5 uM (Fig, 2). A smooth curve fitted to the 
points in a next-amplitude map of the data was used to carry out symbolic dynamics, a 
period-three cycle was found for certain initial conditions. The theorem of Li and Yorke 
(29) that the existence of a period-three oscillation implies chaos was then used to argue 
that the irregular oscillations were in fact chaotic. This observation was made less than a 
year after publication of the pioneering paper by Rossler (30) suggesting that chaos 
might be found in chemical reactions. Schmiz, Graziani. and Hudson reported 
observations of chaos in the BZ reaction (31) only a few months after its observation in 
the PO reaction. 

The PO reaction remains as of this writing the only enzyme reaction shown to 
behave chaotically without the imposition of periodic forcing. Markus, Kuschnutz and 
Hess (32) have shown that the giycolytic reaction exhibits a chaotic response when the 
supply of glucose is periodic. However, although the existence of autonomous chaos in 
glycoiysis has been predicted theoretically (33), there is still no experimental 
verification. 

20 mm 

Fig. (2) Chaos in the PO reaction . Experimental aondition* have 
been found in reference (2B) 



Application of the theorem of Li and Yorke (29) to the next-amplitude maps of the 
aperiodic oscillations in the PO reaction remained for 15 years the only experimental 
evidence for chaos in this reaction. This experimental evidence was supported by 
numerical simulations which yielded ne^-amplitude maps that were very similar to the 
experimental maps. Recent experiments by Geest et aL (34) have demonstrated that 
chaos in the PO reaction arises by the well-known period-doubling route as the 
concentration of DCP is varied over a critical range (see Fig.3) . A similar period-
doubling route to chaos has been predicted from simulations with a detailed model of the 
PO reaction for variations of the enzyme concentration (35). This prediction has yet to 
be verified experimentally; however,the Lyapounov exponent and fractal dimension were 
computed in a further study by Geest et aL (1) for the experimental data and compared 
with those obtained from models of the reaction. The Lyapounov exponent measures the 
average rate at which two initially close trajectorie; .-jrwerge or diverge. A positive 
exponent implies chaos, and hence the Lyapounov exponents computed from the time 
series by Geest et aL (34) suggest chaotic motion. 
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The fractal dimension measures the information needed to specify the position of a pohu 
on an attractor to within a given accuracy and hence, in some sense, expresses the 
complexity of the motion. Simple types of motion have low-integer dimensions. For 
example, the dimension of a steady state is zero whereas a limit cycle oscillation has a 
dimension of one. Chaotic motions usually have finite but non-integer dimensions, aiso 
known as fractal dimensions. Dimensions in the range of 2.45 to 2.7 obtained for the 
experimental data are indicative of chaotic motion and are also strikingly hi accord with 
theoretical values previously predicted from a simple model of the PC reaction . These 
recent experimental results thus confirm that the irregular oscillations observed by Olsen 
and Degn in 1977 are indeed chaotic. 

Recent experiments at Stanford University (36) have revealed the existence of 
quasiperiodic oscillations in the PO reaction using the same experimeutal configuration 
as Olsen and Degn; whether or not this quasiperiodicity is associated with a different 
route to chaos is presently unknown. Both period doubling and quasiperiodicity are well-
known routes to chaos, and both have been found to be associated with chaos in models 
ofthePO reaction. 

Theoretical understanding of the kinetics of the PO reaction is quite detailed. Much 
of this study has been based upon the early work of Olsen and Degn (27) who proposed 
a four-variable model composed of two coupled autocatalytic cycles. Furthei computer 
simulations and theoretical explanations of the behavior of this model were given by 
Degn, Olsen and Perram (37), so this model has come to be known as the DOP model. 
Degn et al, reported in their 1979 paper that the Dop model seemed to be incapable of 
supporting chaotic behavior. Later work by Larter et al, (38, 39) showed that chaos 
could, in fact, be found within narrow ranges of parameter values. Olsen (40) suggested 
a slightly modified model prior to this discovery to explain the existence of chaos in the 
PO reaction. 

Several groups simultaneously were carrying out computer simulation studies of 
detailed models based on the twenty or so possible reaction steps which may occur in 
the PO reaction. Yokota and Yamazak (41) proposed a detailed mechanism and found 
some agreement between simulations based on it and the induction kinetics, but uever 
reported observing oscillatory behavior. Fed'kina, Brounkova and Ataullakhanov (42) 
studied a similar mechanism by reducing it to a subset of approximate rate equations for 
the two species Hz02 and NAD. Oscillatory behavior was found in this (greatly reduced) 
subsystem. Using a formalism known as stoichiometric network: analysis, Aguda and 
Clarke (43) extracted a subset often crucial steps from the twenty possible reactions and 
showed that these ten steps are sufficient to explain the bistability and damped 
oscillations. Later studies (44) showed that the ten-step mechanism also can explain the 
existence of sustained oscillations. More recently, the addition of two more steps (35) 
has led to the discovery of chaotic behavior in the latest detailed model It is interesting 
that certain details of the experimental observations which were not reproduced by the 
four-variable models are, in fact, seen in simulations with the detailed mechanisms. A 
detailed description of the modeling and simulation efforts are found in reference (1) in 
the article written by Larter, Olsen, Steinmetz and Geest. 
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Computational studies of a detailed model by Aguda and Larter (44) led them to 
predict that under certain conditions, the PO reaction might possess coexisting stable 
states^ one oscillatory and the other stationary, This type of Instability between a limit 
cycle and a steady state also is known as a "bard excitation". Aguda, Hofrnann Frisch 
and Olsen (45) confirmed this prediction experimentally . Specifically, it had been 
predicted that a perturbation of the steady state by a sudden cut-off of the oxygen flow 
would lead to a transition from the steady state to the coexisting oscillatory state. 
Furthermore, a transition from the oscillatory state to the steady state could be induced 
by perturbing the reaction with a spike of H2O2. The transition from one state to the 
other was found to be reversible, as predicted by the simulations. 

Some quantitative disagreement between experimental observations and the 
computational predictions were noted, however. Experimentally, the steady state was 
found to correspond to an oxygen concentration miawny between the minimum and 
maximum O2 concentrations of the oscillatory state, as opposed to the simulations which 
predicted the steady state 02 concentration to be lower than the minimum O2 level of the 
oscillatory state. The computational study further predicted that the observed bistability 
was due to an S-shaped steady-state curve in which the upper branch undergoes a Hopf 
bifurcation. The experimental results seem to suggest that if an S-shaped steady-state 
curve underiies the observed dynamics, then [O2] is not the variable which is multiple 
valued. Rather , the S-shaped curve might correspond to multiple steady state values in 
one of the other species, each of which yields the same, or nearly the same, O2 
concentration. An alternative and equally valid explanation of the experimental results 
would involve a stable limit cycle sunounding an unstable limit cycle, which itself 
suirounds a stable steady state, ie, bistability would exist between a locally stable steady 
state and a surrounding stable limit cycle. No evidence for this latter scenario was found 
in the computational studies, but it cannot be ruled out experimentally. 

Lazar and Ross have carried out studies (46, 47) of the effect of periodic 
perturbations of the oxygen inlet flow on the PO reaction and have found that these 
perturbations affect the overall reaction rate and the free-energy dissipation. The system 
studied was similar to that used by Nakamura et al. (26) in that a second enzyme, 
ghicose-6-phosphate dehydrogenase, was used to regenerate NADH from NAD+. (The 
glucose-6-phosphate dehydrogenase used by Lazar and Ross (46, 47) was different from 
the enzyme used by Nakamura et al. (26) in that it reduces NAD+ and NADP* equally 
well). The rate of reaction in these experiments was determined Scorn the slope of the. 
[NADH] time series while the free energy of reaction was calculated from the defining 
equation and the measured concentrations of substrates. TTie perturbation frequency was 
varied, and it was found that while all frequencies lower the dissipation (and hence 
increase the efficiency) the smallest effect occurred for frequencies near the autonomous 
frequency of the reaction. This latter observation was attributed to the fact that a 
perturbation at the autonomous frequency increases the free energy but lowers the 
reaction rate, and that these two effects compensate for each other, thus causing the 
dissipation to remain nearly unchanged, 

One aspect of the experimental investigation oscillations and chaos in the PO 
reaction that is still not well understood is the role which the additives 2.4-
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dichlorophenol (DCP) and methylene blue (MB) play in the oscillatory mechanism (48). 
Olsen and Degn (27) found that sustained oscillations in the PO reaction can be obtained 
with only DCP present. However, these oscillations were not stable over long times 
unless MB also was present. 

Recently Seveik and Dunfbrd (49) published kinetic studies of the catalysis of 
NADH oxidation by MB itself They pointed out that a related reaction, the MB 
catalyzed oxidation of sodium sulfide, was found to be oscillatory by Burger and Field 
(50) in this latter reaction the MB catalysis was thought to occur autocatalytically, 
Seveik and Dunford also pointed out that the flow rate of 0* into the reaction mixture is 
a critical parameter in both the Burger and Field experiment and in the experimental 
configuration leading to oscillations in the PO reaction. Their studies of MB catalysis of 
NADH oxidation were carried out oxygen flow rates outside the range of values where 
oscillations are to be expected. 

The Seveik-Dunford results raise the issue of whether it is possible for MB to play a 
role in the PO mechanism as a second catalyst for the oxidation of NADH (peroxidase is 
the first catalyst). Evidence against this possibility is given by the experiments of Degu 
(25) which showed that nearly sustained oscillations may be obtained without MB when 
substrates other than NADH, such as dihydroxyfumaric acid and indoleacetic acid, are 
used. However, chaotic oscillations were never observed with these latter substrates; 
heace MB may play a role in the more complex behavior observed in the PO reaction., If 
the role of MB in the PO reactioa is to provide an additional autocatalytic route to 
oxidation of the substrate (as it does in the Burger-Field reaction), this could explain the 
existence of chaos in the presence of MB . More experiments are needed to verify these 
speculations. 

Study of the PO reaction has been undertaken using both detailed theoretical and 
computational investigations as well as some experimental approaches. However, the 
experimental study lags, by far, the theoretical and computational studies, and the time is 
now ripe to carry out a new round of detailed experimental investigations, Achieving a 
higher degree of understanding of this reaction is important since the PO reaction is only 
the second known example of a homogeneous chemical oscillator that undergoes a well-
characterized transition to chaos [BZ reaction is the first example ('6)]. 
Some of the remaining questions involving this reaction focus on the details of the 
mechanism involved with the generation of regular and chaotic oscillations. The question 
of the roles played by the various enzyme species remain unconfirmed . Recent 
theoretical studies of possible detailed mechanisms bring us closer to answering these 
questions. Other unsolved problems involve the role of the critical additives methylene 
blue (MB) and dichlorophenol (DCP) .From dynamical point of view, the origin of the 
oscillations and the route to chaos have only begun to be studied. Further extensive 
investigation of this system is necessary to reach the possible maximum understanding of 
the nonlinear dynamics of the PO reaction. . - -̂  
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1-2 Glycolytic Oscillations 

To this date, glycolytic osculations remain the prototype of periodic behavior 
originating from the regulation of an enzyme reaction. In yeast, glycolytic oscillations 
occur with a period of 5 to 10 minutes when a substrate such glucose or fructose is 
injected at an appropriate rate(66) . oscillations also occur in muscle extracts with a 
somewhat longer period of the order of 20 minutes (67, 68). 

It was demonstrated soon after this observation that glycolytic oscillations originate 
from the reaction catalyzed by phosphofructokinase (PFK), a key regulatory enzyme 
controlling the glycolytic flux (10-12) . The PFK oscillations stem from the peculair 
regulation of this allosteric enzyme: PFK is indeed activated by ADP, one of the reaction 
products. In muscle , autocatalysis is primarily exerted by the other product of the 
reaction f fructose-1,6~P2 (67, 68), 

The most conspicuous property of glycolytic osci:-;Hcms is their controlbythe 
substrate injection rate. The range of constant input rates producing osculations is 
bounded by two critical values (66) . The period of the oscillations diminishes while the 
amplitude passes through a maximum as the input rate increases from the first up to the 
second critical value. 

i 
A, 
W 

l 
Fie. (4) Schematic representation of a product-activated, allosteric enzyme reaction. The 

substrate Si injected at a constant rate, binds to the states R and T of the enzyme * 
and is subsequently transformed Into product P. The product Is removed at a 
rate proportional to its concentration and also promotes the transition from the 
less reactive (T) to the more reactive ( R ) enzyme state.The enzyme contains 
multiple sub units which undergo the conform a tional transition between the B 
and T states in a concerted manner. 
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Following the proposal of phenomenological, enzymatic models or glycolytic 
osculations based on the positive feedback exerted by the reaction product, (69, 70) a 
model taking explicitly into account the allosteric nature of the product-activated enzyme 
was analyzed for the PFK reaction (6,71) .The model (see Fig. 4 ) is governed by two 
differential equations which describe the time evolution of the substrate, a and 
pioducty normalized concentrations in continuously stirred yeast extracts: 

~ - v - a * (1) 

i = qcr<t»-kY (2) 
with 

(3) 
a(l + aXl+Y)a 

L+(l + a)2(l+Y)2 

la these equations, v and cr are the normalized substrate input and maximum 
enzyme reaction rate, respectively; q is a dimensionless parameter, and L is the allosteric 
constant closely related to the degree of cooperatively of allosteric interactions between 
enzyme subunits. Equation 3 gives the simplest form of rate function for the product-
activated allosteric enzyme, assuming that the enzyme consists of two identical subunits 
obeying the concerted transition model of Monod, Wyman and Changeux (72). 

Linear stability analysis of Eqs 1-3 indicates that (71) for appropriate values of the 
other parameters, the unique steady state becomes unstable when the substrate input rate 
is between two critical values : 

v l e ^ v ^ v „ 
This simple model can exhibit simple periodic phenomena : Limit cycles simple 

bistability (coexistence of stable limit cycle with stable steady stats). Introducing a third 
dimension to this system makes the obtaining of complex dynamic behavior: bursting, 
chaos, birhythmicity, even trirhythmicity possible. This will be considered in section JQ. 

1-3 Intracellular Ca Oscillations 

In a large variety of cells, stimulation by an external signal such as a hormone or a 
neurotransmitter triggers a train of-cytosolic Ca1* spikes (9,22). The period of these 
oscillations generally ranges from- seconds (cardiac cells) to minutes (endothelial cells, 
fibroblasts, or hepatocytes to cite but a few examples). The frequency of Ca24- oscillations 
rises with the degree of stimulation. Below a critical magnitude of stimulation, cytosolio 
Ca2+ settle at a low steady-state level; above a second, higher critical value of the 
external stimulus, a high steady-state level of cytosolic Caz+ is established. In some cells 
such as cardiac myocytes or pituitary cells, Ca2* oscillations can occur spontaneously in 
the absence of stimulation (6). 

While the number of experimental studies of Ca2+ oscillations has rapidly increased 
in the last few years, interest also has been extended to the spatial aspects of Ca2* 
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signalling (73) , The propagation of Ca2+ waves had long been observed in amphibian 
eggs after fertilization (74} . In hepatocytes (75) and endothelial cells (76), a link 
between Ca2+ oscillations and the wave propagation of Ca*" signals has since been 
established. The same link has been demonstrated in cardiac myocytes where Ca2** waves 
propagate as a sharp band along the cell, at a rate (77) of the order of 100 ms*. In 
contrast, Ca1+ waves in hepatocytes and endothelial cells propagate as "tides" (20) with 
a progressive increase in Ca2* all over the cell, at a rate (75, 76) close to 20 xas'1, 

The mechanism o£ Ca2+ oscillations and Ca2+ wave propagation involves the 
synthesis of inositol 1,4,5-trisphosphate (IPs) (19, 73). The level of this intraceShilar 
messenger increases after stimulation, owing to the activation of phosphoinositidase C. 
The role of IPj is to mobilize Ca3* from an intracellular store. Models for Ca2+ 

oscillations primarily differ according to whether or not they rely on concomitant 
oscillations in 1P3 (78). 

In the model proposed by Meyer and Strycer (79), a ̂ dilations originate from the 
elevation of the cytosolic Ca2+ level by IPj and from the activation of IP3 synthesis by 
Ca2+, Such a cross-feedback loop results in a global process of self-amplification; Ca2+ 

oscillations are necessarily accompanied by aperiodic variation in IP3. Extensions of the 
original version of this model have been proposed (21). 

A second class of models relies on the process of Ca24* - induced Ca2+ release 
(CICR) to account for Ca2+ oscillation (78, 80, 81). Here (see Fig. 5 ) the rise in IP3 
triggers a constant release of Ca2* from an EP3 sensitive store into the cytosoL Cytosolic 
Ca2* is transported into a second store, insensitive to IP3 from which it is eventually 
discharged in a process activated by cytosolic Ca2+; the latter CICR process has been 
demonstrated only in cardiac and muscle cells but some evidence for its occurrence in 
other cell types has been obtained . 

Stimulus 
\ 

N + r\ 
V p - C a 2 * - ^ / 

" /aftjygmg|g 1 ^^^^ 
■ 

*w 
■ 

*w 
Fig. (5) Schematic representation of the model for Ca3* oscillations based ao Ca2+ 

Induced Ca,+ release . An extracellular stimulus elicits the synthesis of inositol 
1,4,5- trisphosphate (IP3 which mobilize* Ca2* store from which it is released 
in a process activated by cytosolic Ca3* . The latter regulation incapable of 
producing sustained Ca1* oscillations (Redrawn from ref. 78). 

-**cV 
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The model based on CICR, in its simplest form, is governed by two differential 
equations which describe the time evolution of cytosolic Ca*" (Z), and 

dZ 
■ - v . + v ^ - v ^ + V j - k Z (4) dt 

T = V'-V) ( 5 ) 
with 

7 ° V m 7P 
v 2 «V. - 3v,=V, . ( 6 ) 

*(K;+Z") a 2 3(K£+Ym) (K*+Zp) V 

In the above equations, V2, and V3 denote the maximum rates of Ca2* pumping into 
the 1P3 , insensitive intraceUular store and of Ca2* release into the cytosol. The rates n* 
and n3 have been written so as to allow for positive cooperatively in pumping and 
release, as well as in the activation of the latter process by cytosolic calcium; K2, KR and 
KA denote the threshold constants for these processes, while n, mmt and p represent the 
BQli coefficients characterizing their degree of cooperatively ( n, m, p £ 1). The threshold 
constant KR and concentration Y are both defined with respect to the total intracellulur 
volume. 

One of the most salient results of the model based on the CICR mechanism is 
represented in Fig.6 . There, the temporal evolution of cytosolic Ca2+ is shown at 
different values of the parameter {3 associated with increasing levels of stimulation. In the 
absence of stimulation, a stable steady state is established, corresponding to a low level 
of cytosolic Ca2+ (panel A). Upon increasing the value of p , the steady state becomes 
unstable and oscillations appear, with a frequency that rises with the degree of 
stimulation (panels B and C). Finally, above a critical degree of stimulation, oscillations 
disappear and the system evolves towards a stable steady state corresponding to a high 
level of cytosolic Ca2+ (panel D). Similar results are obtained upon raising the level of 
extracclluular Ca2+ (80,81). The sequence of dynamic behavior predicted by the model in 
response to increasing levels of stimulus is observed in many cell types (19-22). 

In some cells it appears that the distinction between the two pools of Ca2+, one 
sensitive to EP3 , and the other to Ca2+ , is not so clear-cut, in these cells, indeed, Ca2+ 

and IP3 behave as co-agonists for the induction of Ca2* release (82), The analysis of 
such a dual regulation of the Ca2* channel indicates that sustained oscillations of 

" cytosolic Ca2+ may still occur in a one-pool model in these conditions (83). 
The model based on CICR can be applied to Ca2*" wave propagation once the 

diffusion of cytosolic Ca2+ is taken into account. The analysis shows (78) that waves 
similar to those observed in cardiac cells or in lepatocytes and endothelial cells can 
occur, with the observed rates, depending on whether the period of Ca2+ oscillations is 
of the order of seconds, as in cardiac cells, or minutes, as in the latter types of cells. The 
model also has been used to generate spatial patterns similar to those observed in 
oocytes (84). 

Most Ca2* oscillations observed in the experiments are of the simple rather than 
complex periodic (or chaotic) type. In some cells, however, stimulation by certain 
agonists triggers a train of Ca3+ spikes riding on a slower oscillation (seet e.g., ref 73), 
such behavior, reminiscent of bursting , suggests the interplay between at least two 
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regulatory mechaaisms. It k likely that the slower oscillation involves the variation of IP3 
while the faster spikes originate "from CICK 
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Fig. (6) Sustained oscillations in cytosolic Ca1* generated by means of Eqs. 4-6 for increasing 
values of b measuring tbe stimulation level in tbe model based on Ca^ - induced Ca2* release (ref. 
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1-4 The Mitotic Oscillator 

Besides Ca" oscillations, the most important oscillatory process discovered in cell 
biology during the last decade is the biochemical oscillator .controlling the onset of 
mitosis in eukaryotic cells. Advances in the molecular identification of the mitotic control 
system originate, primarily, from biochemical studies performed in frog, sea urchin and 
starfish embryos on the one hand (23) and in yeast on the other hand (S5). Oscillations in 
yeasts should be discussed in section 1-5. 

While the experimental evidence points to the existence of a continuous biochemical 
oscillator driving the onset of mitosis in rapidly dividing embryonic cells with a 
periodicity of the order of 30 rain (23), the situation is more complex in yeast and 

" "somatic cells (85). There, additional feedback processes exist; the mechanism regulating 
the onset of mitosis is blocked until a sufficient cell size is reached or processes such as 
DNA replication or mitotic spindle formation are completed. Evidence for a continuous 
mitotic oscillator has also been obtained in Drosophila where the 13 first nuclear 
divisions occur with a period close to 8 min. 

In embryonic cells, the cell-division cycle is driven by a protein named cyolin (23, 
86). The progressive accumulation of cyclin leads, through a cascade ofbiochemical 
reactions, to the activation of an enzyme called cdc2 kinase (the name originates from 
genetic studies in yeast where a number of cell division cycle-or cdc-mutations have been 
characterized) . The periodic activation of cdc2 kinase initiates in turn the various events 
associated with cell division, such as breakdown of die nuclear envelope, chromosome 
condensation or spindle assembly. 

The regulation of cdc2 kinase is achieved by a cascade of phosphorylatioa-
dephosphorylation reactions (87-89). Several models have recently been proposed for 
the mitoticoscillator. Most of them rely (90-92) on the nonlinear, autocatalytic activation 
of cdc2 kinase for which some experimental evidence exists. However, the analysis of a 
minimal cascade model (93) based on experimental observations (94) shows that 
autocatalysis is not required for producing oscillations in cdc2 kinase activity. In this 
model (Fig,7) cyclk is synthesized at a constant rate and activates enzyme Ei (a protein 
phosphatase, product of the gene cdc25) which dephosphorylates the inactive form of 
cdc2 kinase (M*) and thereby brings it into the active form (M); a protein kinase (E2) 
reverts this activation step. The active formof cdc2 kinase in turn phosphorylates the 
inactive form of a cyclin protease (X*) and thereby brings it into its active site (X); this 
activation step is reversed by a phosphatase (E*). The protease X degrades cyclin, and 
this step triggers the inactivation of cdc2 kinase. It is possible, and even likely, that the 
activation of cyclin protease by cdc2 kinase involves additional phosphorylatioQ-
dephosphorylation cycles (94), such enlargement of the cascade would, however, not 
significantly alter its dynamic behavior. 
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vt ->■ Cycffn - vd 

M = active cdc2 klnase 

X a active cyclin protease 

Fig,(7) Minimal cascade model for the mitotic oscillator.. The model incorporates 
cyclin synthesis, activation of cdc2 kinase by cyclin through a dephosphaylation-
phosphorylation cycle, activation of cyclin protease through a second 
phosphorylation-depbosphoylation cycle involving cdc2 kinase, and destruction 
ofcyctin hy the active form-of protease X (redrawn from ref. 93). 

It has been suggested (23, 94) that the activation of cdc2kinase by cyclin and the 
activation of cyclin degradation by cdc2 kinase constitute a negative feedback loop 
which may result in sustained oscillations. The analysis of the model of Fig.7 shows that 
this conjecture holds, provided that thresholds exist in the dependence of cdc2 kinase 
activation on cyclin, and in the activation of cyclin protease by cdc2 kinase (93). 

The model of Fig.7 is governed by a set of three differential equations describing the 
time evolution of cyclin concentration (C), the fraction of active cdc2 kinase (M), and 
the fraction of active cyclin protease (X). 
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with, 

dC C 
— = Vj - v d X 
dt l d K . + C 

k„C 

- Y i M dM (1-M) 
dt ' K ^ l - M ) " ' i q + M 

« „ (1-M) 
* V 

X 
dt 3 K 3 + ( 1 - X ) 4 K 4 + X 

(7,3) 

« 

V , = V ^ ^ V j - M V w (10) 
K,+C 

Parameters Viand Ki denote the maximum rate and normalized Michaelis constants of 
enzyme E; (I = 1, .„, 4); V| and vd

: denote the input rate and maximum rate of cyclin 
degradation by protease X, while constant kj relates to a relatively negligible, 
nonspecific cyclin degradation. It is noteworthy that the only type of nonlinearity in Eqs. 
7-10 is of the Michaelian type. Tltese equations nevertheless admit periodic solutions 
over a wide range of parameter values, once thresholds occur in the activation of M by 
C and of X by M. A typical example of oscillatoiy behavior is shown in Fig. 8 
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Fig. yy sustained oscillations generated by means of Eqs. 7-10 In the minimal cascade model for 
the mitotic oscillator, schematized in Fig. (7), [ref. 93] 
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It can be seen that the progressive rise in cyclin (C) leads to the abrupt activation of 
cdc2 kinase (M), the latter brings about a shaip rise in cyclin protease (X) after a short 
delay, and the latter event triggers the rapid decline in cyclinL As a result Mdiops 
precipitously, followed by a rapid decrease in X. When the rate of cyclin synthesis 
exceeds its rate of degradation, the level of cyclin may rise again and a new cycle of 
oscillations begins, 

Although based on a number of simplifying assumptions, such as disregarding the 
formation of complexes between cyclin and cdc2 kinase and the effect of a second 
phosphorylation-dephosphorylation reaction involved in cdc2 kinase regulation, the 
model described by Eqs, 7-10 nevertheless shows that the negative feedback loop built in 
the cascade suffices, in principle, to produce sustained oscillation. The model indicates 
the importance of time delays in generating limit cycle behavior; these delays are not 
introduced in an ad hoc manner into Eq, 7 but result from the existence of thresholds in 
the activation curves of cdc2 kinase and cyclin protease (93). 

Autocatalysis can be incoiporated into the cascade model of Pig,8 by assuming that 
the phosphatase Ei is itself activated through phosphorylation by cdc2 kinase. The 
analysis indicates that such an autocatalytic regulation, although not essential for 
oscillations, renders them more abrupt and enlarges the domain of instability in parameter 
space. 

As the experimental study of the cell cycle is undergoing rapid developments, further 
insights into the molecular mechanism of the mitotic oscillator can be expected in the 
near future. It should be noted that the current evidence in this biochemical system points 
to the occurrence of simple periodic behavior rather than more complex oscillatory 
phenomena (6). 

1-5 Oscillating fermenters 

Continuous cultures of Saccharomyces cerevisiae and Zymononas mobilis, two 
important industrial microorganisms have long been known to exhibit spontaneous 
oscillatory behavior for some range of the bioreactor dilution rates (95-97). The 
occurrence of these oscillations adversely affects the optimization and control of the 
operation of the biofennenter. A number of experimental and theoretical studies are 
repoxted in the literature on the causes and means of to eliminate this irregular behavior . 
Out important goal of the experimental studies is the determination of whether these 
oscillations are inherent in microbial cultures or merely caused by undesired variation in 
the controlled operating parameters such as pH level, dissolved oxygen levels or other 
process variables. Parulekar et oL(9S) and Porro et aL (99) for instance examined the 
occurrence of spontaneous oscillations in continuous cultures of the budding yeast and 
found that the periodic regimes in the chemostat are determined by the dilution rate and 
the dissolved oxygen concentration (see Fig. 9) , Munch et aL (100) also showed that 
the cell cycle is fundamental iu predicting the dynamic behavior of continuous cultures of 
the microorganism 

Chemostat cultures Z.mobilis, showing sustained oscillations in biomass, product 
and substrate are also reported in the literature (97,101). Jobses et aL (102) for instance 

TT3SCE, VoJ.26^ No.2 ^12^ ■JWy208&-



reported experimental oscillations in continuous cultures of the microorganism at high 
ethanol concentration , and suggested means to eliminate them (see controlling chaos 
section HI). Sustained oscillations in microbial cultures have been observed even when 
the feed conditions and the culture physical condition, like temperature, agitation speed, 
etc., are maintained constant (99,103). 

Fig. (9) Spontaneous oacsillationa of S. cereviaiae. [ ref 104] 
A. Measurement* at carbon dioxide in the exhaust gas and the 

dissolved oxygen concentration (DOT) in % o£ tha equilibrium value. 
B. Measurement* of ethanol and acetate. 
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This suggests that the oscillatory behavior is probably governed by microbial 
physiology rather these an inhomogenous environment Nielsen and ViBadsen(104) 
introduced an explanation to these oscillation in terms of desynchicmized cell division 
They gave a verbal model shown by table (1): 

Table(l): A verbal model for description of the occurrence of spontaneous 
oscillations in £ Cerevisiae cultures. 

During the single cell phase (undbudded phase) there is an accumulation of internal storage 
carbohydrates in the form of trehalose and glycogen. During the budding phase there is a 
high energy demand and the internal storage carbohydrates are mibiiised, which results in a 
very high flux through the glycolysis. Due to the limited respiratory capacity of the cell this 
high flux results in excretion of ethanol. The excereted ethanol can be metabolized by the 
unbudded cells together with the glucose (which is present only in a limited amount) resulting 
in a higher specific growth rate for these cells. Furthermo'> *;.- the presence of ethanol the 
critical mass for budding will become smaller while the critical mass for eel! division 
increases. When the ethanol is exhausted the specific growth rate decreases, and the critical 
mass for cell division decreases whereas that for budding increases. The variations in the 
threshold values, i.e. the critical masses for cell division and budding, may give rise to the 
formation of an a/tractor which results in a stabilization of the partially synchronized culture. 

Hjortso and Nielsen (105) based on this verbal model; argue that periodic behavior in 
microbial cultures can be modeled by periodic solution of the age distribution balance. 
But due to the difficulties of forming a mathematical model within the age distribution 
framework, simulation of spontaneous oscillations has not been done by computer 
models which are derived from the concepts of the verbal model (104). Since the exact 
mechanisms behind the occurrence of these oscillations are not fully known at present 
time, modeling these oscillations presents a challenging task. IThis task is further 
complicated by the need to understand the complex interactions between the different 
species in the process and the difficulty in quantifying the different rates involved. A 
computer model based on the bottleneck model (106) was proposed for instance by 
Strassle et al. (107) for the synchronization of Saccharomyces cervisaie cultures. Cell 
mass for unbudded cells and cell age for budded cells were taken as the characteristics 
intercellular variables for the different morphological terms. The spontaneous oscillations 
were correctly predicted (108) by the model. However, Strassle et aL (107) divided the 
biomass into large number of morphological forms (96 species), and conversion between 
the forms is described in a complex fashion. It is therefore difficult from their paper to 
extract the kinetics for metamorphosis reaction in the verbal form described by Nielsen 
Eind Villadseu(104). 

Cazzador et al. (109, 110) discuss a computer model which predicts spontaneous 
oscillations of a budding yeast cultures. The model is also based on the desynchronized 
cell division mechanisms. In this model budded and unbudded cells are described as two 
morphological forms with the same specific growth rate given by Monod expression. The 
yield coefficient of biomass on glucose is, however^ different for the two forms, and its 
hereby possible to describe oscillations in the glucose concentration when the budding 
index (the fraction of budded yeasts) varies. Although Yano andKoga (111) on the other 
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hand analyzed the behavior of continuous culture systems based on several fermentation 
kmeucs in which the products inhibit the growth rate of the biomas;. Repeated 
oscillations appear in system in which the inhibitory action of compound is delayed A 
delayed inhibition can be imagined if the inhibitor does not act directly on the 
iermentation and thereby directly on its own formation, but indirectly by inhibiting 
another reaction, which is positively linked to the product formation. Jobseset al (102) 
tor instance proposed a structured model for oscillation in continuous culture of Z 
mobiks at high ethanol concentrations. The oscillations were modeled by a structured 
mathematical model in which ethanol inhibits the maximum specific growth rate 
indirectly by inhibiting the synthesis of an internal growth rate detenruuing compound. 

Bifurcation analysis to Jobsis model has been given by Elnashaie et a\. (112) and a 
wealth of different oscillations was obtained the simplicity of the morpholo^cal model 
of Cazzador et al, a stable limit cycle is only obtained by this model (lM)"la a more 
abstracted structured dynamical model for microbial cultures accounts for substrate and 
intermediate product inhibition. Ajbar and Ibrahim (113) observed a wealth of complex 
dynamic phenomena sustained oscillation, quasiperoidic oscillations, md chaotic 
oscillations. Some of these osculations coexist with high conversion operating points. 

Ihspite of its simpfcity and validity in bioreactors, unstructured models ju;.r begin 
to be used m modeling oscillatory behavior of bioferments (114). Ibrahim and Ajbar 
started by the analysis of one of the important instability creating mechanisms that is the 
substrate inhibition kinetics represented by the so common Haldane equation. They 
proved that this equation is useless in generating oscillation at aU( 114). Ibrahim and 
Ajbar developed a new unstructured pseudo homogenous floe model that accounts for 
substrate inhibition and oxygen limitation kinetics in addition to mass transfer limitation 
(113). The model may be summarized as follows : 

— — — — J Q 

dt 

— — — j p 

C-C = fJ>3UI + (j)4 — (12) 
dt 

The normalized rate expressions p. and u have the following expressions: 
J 2 

S C 
lf = — r - r r — - 03) 1 (1 + S+S/K)(1-C) 

S 
£ = — 04) 
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where 
Kg5AcK, 

KgaAcKc 

♦a = pVc^m2 
KSsAcKsY0( 

94 - « — 
Kgc 

- K x 

In the case of fixed bulk conditions the system of equations exhibit periodic solutions for 
a wide range of model parameter values. The model confirms the importance of the DO 
levels on the existence of periodic behavior. In the case of varying the bulk conditions 
[Co=Co b +A m sin wt] the system exhibits very rich dynamic characteristics 
of the chaotic behavior. Birhythmicity and even trirhythxoicity have been observed as 
shown by Fig.( 10 ) 
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Fig. (10) Time traces showing trirhythmicity obtained by means of Eqs. 11-14, 
a. Period one attractor b. Period 8 attractor; c. Chaotic attractor [ref. 114] 
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1-6 Acetylcholinesterase Enzyme and Oscillating pH 

Acetylcholinesterase enzyme acts on acetylcholine producing choline and acetic acid 
(which is fully ionized to acetate ions and H* ). This enzyme plays a recognized role in 
nerve excitation (116), Acetylcholine is secreted by neurons in many areas of the train, 
but specifically by the large pyramidal cells of the motor cortex, and by many different 
neurons that innervate the skeletal muscles. A significant portion of this enzyme is found 
in intercellular compartments (117). In most cases, acetylcholine has excitatory effects 
(116). 

In enzyme membrane systems, the local production of hydrogen ions decreases the 
pH, and owing to the amphoteric properties of the proteinaceous membrane the lower 
the pH, the lower the density of the negative fixed charges in the membrane (118). Local 
pH changes inside an artificial enzyme membrane were first shown by Goldman et at. 
(119). The potential differences fiom acetylcholinesterase membrane exhibits similar 
electrical response to the behavior observed with excitable membranes (17). The steady 
state potential resulting from the enzyme activity for increasing and decreasing substrate 
concentrations exhibits a hysteresis behavior . Because of the autocatalytic effect 
resulting from the production of hydrogen ions and the existence of dhYusional 
resistances, hysteresis phenomenon develops in definite range of parameters, and because 
of the amphoteric properties of the membrane, the hysteresis of the internal pH is 
transformed into a hysteresis in membrane potential (17). In addition, the nonmonotonic 
behavior of the enzyme reaction rate coupled with the diffusion constraints causes 
instabilities and oscillatory behavior in membrane potential and in acetylcholine 
concentration level. 

The static bifurcation problems of this enzyme system has been talked by Elnashaie 
et al. (120-122) almost fifteen years ago. In the light of recent advances in fundamental 
knowledge and techniques regarding such dynamical systems, the problem is 
reinvestigated by Ibrahim and Elnashaie (54) on a higher level of model formulation and 
analysis of the results, and a wealth of new dynamic features are observed by Ibrahim et 
al. (54). 

TTie problem investigated is that of the enzymatic 
reaction S^P l+P2"+lT 

where in the case of acetylcholinesterase 
S denotes acetylcholine {CHsCO.OtC^N^CI^} 
Pi denotes choline {HO(CH2)2N*(CH3)3} 
P2 denotes acetate {CH3COO*) 

The reaction is considered to take place in a constant flow isothermal continuous 
tank reactor (CSTR) which is divided by a semipermeable membrane into two 
compartments as shown in Fig.(ll). The reaction takes place in the liquid phase 
according to the following rate equation (1) 
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RfS HI - MnLkj n$\ 
' "[SI+CSf/Ks + K^Kh+[111+1/^}/[HJ 

where [S] is the substrate concentration, [H] is the hydrogen ions concentration, Vm 
is the ma;dmum reaction rate per unit mass of the enzyme; K&, K,, K*, are equilibrium 
constants and Kj is an inhibition constant. If the active volumes of the compartments are 
Vt, V2 and the enzyme concentrations in both compartments are equal to E in units of 
enzyme mass per unit of active volume, the volumetric flow rate is q. Using the 
pesudosteady state assumption for hydroxyl ions (Le. [OHj/dt = 0) then the material 
balance equations for the two compartments can be summarized in dimensionless form as 
follows [for more details regarding the model derivation see reference (54). 

5< L ~ ^ i * - S l 

Fig. (11) The two compartments model 

For hydrogen: 

dh; 
—f = aythrh^bsaHthrhiVa^ (l/hr l/h1HBhrj+b^ctoH(l/hrl/h2)..(16) 
oT 

For substrate: 

—±- =ajj(srsj) - bfl/3,-82) - BJTJ (17) 
at 

where j=l,2 denotes compartments 1 and 2 respectively, h-[HJ/Kh, T=tq/V r, an=l,ai2 
= 0, f denotes feed conditions, VR = \tyV2, b : = 1, b2 = -VR, a0H = a'0H- A^/q, g - Kw 
tf» , Bh - Vm.EVV(Kh.q)aH = aH.Am/q, a . - a ' . A . / q , B,«Vm.E.Vt/(K,.q), s -
[S] / K,, a* = KJ K; and 5 = KJ Kh. The dimensionless rate of reaction is given by : 

rj = - J ( l g ) 
J s j+s] .a i+(l-hh j -hh | .6) /h j 
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Hie two compartments model is thus represented by four differential equations with 
four state variables hi, hi, St, s? which describe the dynamics of hydrogen ions and 
substrate concentrations in the two compartments. 

Different dynamical models were obtained by this model including : limit cycle-
bistability (point attractor and limit cycle) - chaos followed the period doubling sequence 
- chaos termination by crisis points - periodic windows interrupted chaotic sequence, 

The transition from small amplitude oscillation to bursting oscillation proved to be 
quite complex (54). Fig.(12) shows an interesting feature with regard to the difference 
between the pH values in the two compartments (pHi, pHi) respectively: 

ApH = pH2 - pHi 

It is clear from the figure that ApH changes its sign twice during each cycle (period), 
which means that the ET ions transfer between the two compartments and changes their 
direction twice every cycle. This alternating sign of A pH is associated with the bursting 
oscillation shown by the figure. The two modes of sustained oscillations observed in this 
region of parameter values may give insight into the common physiological phenomenon 
of slow wave rhythm of membrane potential that characterizes the self-excitation of some 
of the smooth muscles owing to the acetylchoHnesterase activity (116). More complex 
dynamical modes of this system should be discussed in section II. 
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1-7 Periodic Behavior of Dictyostelium Cells 

The cellular slime model Dictyostelium discoideum represents a prototype of spatio-
temporal organization at the cellular IeveL These cells indeed aggregate after starvation, 
by a chemotactic response to pulses of cyclic -AMP (c-AMP) emitted by centers with a 
periodicity of 5-10 min; as a result of such a periodicity in c-AMP secretion, cells collect 
around the aggregation centers in a wavelike manner (120-122) . From the point of view 
of temporal organization, the periodic synthesis of c-AMP in Dictyostelium represents a 
remarkable example biological rhythm involved in intercellular communication. With 
regard to the main theme of this volume, of particular interest is the possibility that in 
some cases, the signaling system in Mctyostelium may function in an aperiodic, chaotic 
manner. The periodic and aperiodic oscillatory properties r*he c-AMP signaling system 
will be examined in turn below, 

Model for c-AMP Signaling Based on Receptor Desensitization ;The mechanism 
of c-AMP oscillations in Dictyostelium rests on the positive feedback exerted by 
extracellular c-AMP on its intracellular production. Upon 

Fig.(13) Model for c-AMP signaling in Dictyostelium based on receptor desensitization 
. Extracellular c-AMP binds to the active <S state of the receptor and thereby 
elicits the activation of adenylate cyclase(C) which synthesis c-AMP from 
ATP. Binding of c-AMP to the receptor in the R state induces Its transition 
to the desensitization (D) state which cannot activate the cyclase, Other 
arrows refer to ATP synthesis, intracellular c-AMP transport tota the 
extracellular medium, and c-AMP hydrolysis by phosphodiesterase (from ref 
123). 
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Binding to a cell surface receptor, c-AMP triggers the activation of adenylate 
cyclase which produces c-AMP from ATP. Intracettular c-AMP thus synthesized 
is transported into the extracellular medium where it binds to the receptor and 
further enhances its own production, while part of it is hydrolyzed by the enzyme 
phosphodiesterase present on the cell membrane and in the extracellular medium 
(121, 122). 

As important for oscillations as is the positive feedback loop described above, the 
factor that limits autocatalysis is equally important. A major role here is played by 
desensitization of the c-AMP receptor through reversible phosphorylation (124, 125). 
Holding with these observations, a model for c-AMP signaling based on receptor 
desensitization (see Fig.13 ) has been proposed by Martiel and Goldbeter (6, 123), In its 
simplest version, it describes the time evolution of intracellular and extracellular c-AMP 
and of the fraction of active c-AMP receptor, ATP is treated as a parameter in that 
version of the model since the amplitude of ATP variations remains reduced* in the 
course of c-AMP oscillations. The resulting three-variable system is governed by the 
following kinetic equations. 

^ L = - f i ( Y ) Q T + f 2 ( 7 ) ( l - Q T ) 

£ - q a « Q T i T , a ) ^ 

* - < ¥ > - * 
fl(Y) : _ k ! + k 2 7 k ^ + k j L j c y 

l + y l + cy 

< K Q T . Y,a) = i =—'-—,Y 
l + a 0 + e Y 2 ( l + a ) 

_ Q T Y 
l + y 

(21) 
at n 

where, 
k. -TrkiV k , l , 4-k^T.«nv 

(22) 

(23) 

In these equations, fj and y denote the normalized concentrations of intracellular and 
extracellular c-AMP while pr denotes the fraction of active receptor, a is the 
normalized level of ATP and other parameters relate to the kinetic characteristics of the 
receptor, adenylate cyclase c-AMP transport, and c-AMP hydrolysis by 
phosphodiesterase (see ref 123 for further details). 

A recent extension of the model incorporates G proteins which act as intermediates 
between c-AMP binding to the receptor and activation (or inhibition) of adenylate 
cyclase . The results obtained in that extended model are qualitatively similar to those 
obtained in the simpler model governed by Eqs. 

Oscillations and Relay of c-AMP Signals ;The model described by Eqs. 19-23 
generally admits a unique steady state solution which can become unstable for 
appropriate values of the parameters. In these conditions, the system evolves toward a 
stable limit cycle corresponding to sustained oscillations in c-AMP . These oscillations 
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(Fig, 14) whose period is of the order of 5-10 mil for the parameter vahies collected 
from the experiments, are accompanied by a periodic alteration of the receptor between 
its active and desensitized states (123) . A similar alternation is observed in the 
experiments, since the receptor oscillates between its phosphoiylated and 
dephosphorylated forms in the course of c-AMP oscillations (122). 

5 **■* ArP[a3 

a 
CO. 

3 

Time [mini 

Fig.(14 ): Sustained oscillations of c-AMP in the model based on receptor 
deseositization. Shown are the normalized concentrations of intracefluiar 
(b) and extracellular c-AMP (y), ATP (a), and ibe fraction of active c-AMP 
receptor (pr) (From ref 123), 

Relay of c-AMP signals in the course of aggregation consists in the pulsatory 
amplification of suprathreshold c-AMP pulses. The analysis of the model in the phase 
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plane indicates that a close link exists between relay and oscillatory behavior (123). The 
former type of phenomenon reflects the excitability of the c-AMP signaling system; for 
parameter values close to those producing oscillations, the steady state is indeed stable 
but excitable; a suprathreshold increase in extracellular c-AMP then leads to the 
synthesis of a large pulse of c-AMP before the system returns to the stable steady state. 

II- Complex Oscillatory Phenomena in 
a Regulated Biochemical System 

To analyze the transition from simple to complex oscillatory phenomena, two 
complementary ways exist a priori. The first is to try to account for complex oscillations 
observed in the experiments. The second is to rely on the analysis of more or less 
abstract models whose primary goal is not so much to account for experimental results 
but rather to explore the realm of possible modes of complex behavior. To this approach 
belong a series of simple biochemical models which were developed to investigate the 
occurrence of birhythrnicity (coexistence of more than one cyclic attractors) bursting and 
chaos in biochemical systems (6). The interest of these studies is of course not limited to 
the biochemical field because the phenomena predicted by these models can occur in 
other, nonbiological, chemical systems. Thus birhythrnicity was demonstrated in a 
chemical system (51) following its theoretical prediction in one of these biochemical 
models (33). 

II-l Birhythrnicity: 

The vast majority of oscillation in biochemical system corresponds to the evolution 
toward a stable limit cycle. Such a limit cycle is generally unique for a given set of 
parameter values. A good example of the simple birhythrnicity [where two unit cycles are 
coexist] is given by Moran and Goldbeter (52). They extended the glycolytic oscillator 
model to account for nonlinear recycling of product into substrate. In addition to simple 
periodic behavior corresponding to the evolution toward a unique limit cycle the system 
can admit the coexistence between * two stable limit cycles more recently Ibrahim and 
Elnashaie (53) discovered a complex birhythmidty in the enzyme acetylcholinesterase 
system using two compartments model (54). This complex bistability are summarized as 
follows. 

* Two simple periodic attractor (two cycles of counted periodicity) 
* Complex bursting and simple periodic attractor. 
* Chaotic and simple periodic attractors. 
* Complex bursting and chaotic attractors . 

These four categories are summarized and shown in Fig.( 15 ). 
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Fig. (15) ConipleK bistability obtained by means of the two 
compairtmenta model schematized by Fig- 11. [ ref. S3] 

Actually this complex birhythmicity obtained in the negbourhood of dangerous 
boundaries, i.e. homoclinical condition. 

Ibrahim and Ajbar found sense few months a very rich bistability when they 
developed and analyzed a pseudo-homogenous floe model for oxygen limited 
fermentation processes (55). They found a region of parameter values characterized by 
three cyclic attractors one of these attractors was chaotic and the second was high 
periodic and the last was period one attractor as shown- elsewhere- byFig.(lO). 
However, the phenomena of birhythmicity and trirhythrnicity between all the attractors 
coexisting in phase space (two or three ) indicates dynamical richness and could be 
controlled upon appropriate perturbations. 

II-2 Bursting and Chaos: 

Bursting is a term used to describe the behavior of certain neurophysiologycal and 
chemical systems in which there is a period of rapid spiking followed by quiescent 
(resting) period. It is often in this form of excitable membrane activity that cells in the 
biological nervous systems are involved in various rhythmic behavior, such as central 
pattern generations in invertebrates or pacemakers of brain waves knmmmalian cortex 
TESCE, Vol.26, No.2 -140- July 2000 



{56, 8). It is therefor a question of biological interest to ask how a rhythm (of bursting) 
can come about (57). The work of Holden and Fan (58-61) on the dynamic behavior of 
membrane excitation using a non-phenomenologkal three variables model of action 
potential shows clearly the existence of different dynamic modes, including simple 
periodic, bursting periodic and chaotic behavior. A wealth of transition mechanism 
between different types of behavior has been discovered by Holden and Fan (53-61). 

One of the interesting observations noticed is that many of the dynamic phenomena 
discovered by Holden and Fan using the three dimensional non-phenomenological action 
potential model (Rose-Hindinarsh Model) are also obtained using the present 
phenomenological two compartments model with membrane separating the two 
compartments (54). 

Ibrahim and Elnashaie observed and analyzed the bursting generation in the 
acetylcholineserase system via complex bifurcation scenario. This complex scenario 
occurs in the neighborhood of homoclinic orbits. They proved the hoinoclinicity 
condition using the generalized criterion which was developed by Rossler et al. (62) to 
extend Silhiikov theorem of homoclinicity to the case of four dimension system [The 
two compartments model used by IbraHim and Elnashaie is four dimensional model]. 
Ibrahim and Elnashaie on trying to answer the question of how these modes complex 
bursting come from . They recognized homoclinical conditions associating these 
complex modes of bursting generation (53). 

A simple example of this type of oscillatory behavior is obtained from a three variable 
model which has been developed by Goldbeter and Decroly (33, 63). This model is 
based on the allosteric model proposed for glycolytic oscillation (1). Here, two 
allosteric enzyme are coupled in series, each of these enzyme is activated by its reaction 
product Fig.(16). The variety of dynamic behavior obtained by this model is much larger 
than in the system comprising a single positive feedback loop . Here, one can observe 
the following mode of oscillations : 
1) Simple periodic oscillation (limit cycle). 2) Hard excitation (Le. coexistence of a 
stable limit cycle with a stable steady state).3)Chaos, which is reached after a sequence 
of period doubling bifurcation . 4) Bursting oscillation. Multiple periodic regions also 
can be obtained in this model up to three coexisting stable limit cycles (trirhythmicity) 
have thus been found. Similar modes of dynamic behavior have been observed in another 
biochemical model containing an autocatalytic step (64). 
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Fig. (16) From simple to complex oscillatory phenomena in the multiply 
regulated biochemical system [ ref , 1] 

To explain the occurrence of such complex dynamic modes, Goldbeter(l) urged that" 
Bursting and chaos clearly originate in this multiply regulated biochemical system from 
the interplay between two instability-generation mechanisms. Each of the two positive 
feedback loops can indeed produce on its own sustained oscillation for appropriate 
parameter values. Complex osciTTatory phenomena result from the interaction of the two 
instability mechanisms when theso Income active at the same time". 
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An empirical ixî thod for finding domains of complex osculations and chaos In parameter 
space has been developed based on this conjecture (33). It consists of identifying two 
distinct domains of instability in a given parameter space, each of which is associated 
with one of the two destabilizing feedback mechanisms. Then, by changing some other 
parameter, the two domains of instability are brought closer to each other \mtil they 
overlap. It is often in the region of overlap that complex oscillatory phenomena occur in 
the form of birhythmicity, bursting or chaos, 

Investigation of the Martiel and Goldbeter (123) model of the Dictyostelium cells 
oscillation for more complex dynamical modes (i.e. Bursting and Chaos) are detailed in 
reference (6). However, taking into account the variation of ATP, the signaling system is 
governed by a set of four kinetic equations. A quasi-steady state hypothesis for 
intracellular c-AMP (P) permits one, however to reduce the number of variables so that 
the system is governed by the following set of three kinetic equations (126). 

■ ■ ^ L - - f l ( Y ) Q T + f 2 ( Y ) ( l - Q T ) 

da 
— = v - o ( K Q T , Y , a ) 
at 

dy_ = q k t a t K Q T ^ c Q ■ (23,24,25) 
dt h(k t + k t ) 

Where: 

f / v x _ f c i + k 2 Y 2
 f , v . . . f c [ L i + k 2 L 2 c V M(Y) = ■—:;—5—>*2 a ) ~ ; — n 1+YZ 1 + c y 

(26) 

.2 

l + a8+eY( l + a) l + yz 

Besides the inclusion of a as a variable and the quasi-steady state assumption for p, 
what distinguishes Eqs.23-27. is the hypothesis that the noniinearity required for 
oscillations occurs in the activation step between the receptor and the cyclase rather than 
at the level of c-AMP binding to the receptor. Both kinds of noniinearity yield similar 
types of dynamic behavior. 

The system governed by Eqs.23-27 presents new modes of oscillatory dynamics, in 
addition to simple periodic behavior and relay of suprathreshold c-AMP signals. Thus 
bursting and birhythmicity can occur in this system, (126) as well as aperiodic 
oscillations (127), the latter again appear through a cascade of period-doubling 
bifurcations, both with respect to parameter v and to parameter k<. which relate, 
respectively, to the input of ATP and to the hydrolysis of extracellular c-AMP by 
phosphodiesterase. The domains of birhythmicity and chaos in parameter space are again 
much more reduced than those where simple periodic oscillations or bursting are found 
(6). 
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Tlie prediction of chaotic behavior in the model for c-AMP signaling raises the 
possibility that autonomous chaos may occur in the course of D. Discoideum 
aggregation (127), Of particular interest is the observation by Duxston(128)thatm 
contrast to wild type amoebae which aggregate in a periodic manner on agar after 
starvation, aggregation is "aperiodic" in the mutant Frl7; whereas the interval between 
successive waves remains close to 5 min in the wfld type, it varies from 4 to 24 mm in 
Frl7. Preliminary evidence from experiments in cell suspensions of the mutant HH201 
derived from Frl7 indicates that the synthesis of c-AMP in that mutant is "erratic" 
(129), To test the occurrence of chaos in HH20I, cells placed in stirred suspensions 
were studied by light scattering so as to monitor the dynamic behavior in a continuous 
manner (130), Instead of aperiodic behavior, rather regular oscillations were recorded, 
with a progressive drift in the period from 8 to 6 min, as observed in suspensions of 
wild type cells, 

11-3 Strange Chaotic Attractors 
Few months ago, Ibrahim and Elnashaie investigated tha structure and strangeness 

of some chaotic and periodic attractors (bursting) which occur in the neighborhood of 
homocftoical orbits , One of these attractors is small amplitude high frequency chaotic 
attractor , This attractor was found to be screw type attractor according to Rossler 
notations. This type of attractors art a generic path to homoclinichy (65). Another type 
of the strange attractors which was observed by Ibrahim and Elnashaie is the mixed 
mode chaotic attractor. 
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Fig. (17) Strange chaotic attractor observed by Ibrahim and El­
nashaie (53) 
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This attractor is a composite state of two type of oscillation : complex periodic 
bursting attxactor and chaotic attractor. Fig. (17) shows one of the strange ntractors 
found by Ibrahim and Elnashaie, This attractor appears to be topologically strange from 
the following points of views: Microscopic changes in phase space. Interruption ofthe 
spiraling out sequence. The mixed mode attractor has many similar characteristics with 
the interesting BirkhoE-Shaw attractor (66) which is produced from the forced Van der 
Pol's equation, specially with regard to the feature of repetitive periodic eyries. In the 
case of Ibrahim and Elnashaie attractor, the repeatei cycle is mainly bursting oscillation 
and in Birkhoff-Shaw attractor, the repeated cycle is the forced cycle. The mixed mode 
attractors are very important from practical point of view v.herc the phenomenon of 
irregular action potential may find an explanation, 

DI- Controlling Chaos 

In Biosystems positive as well as negative regulatory feedback provide sources of 
nonlhiearity which, in conjunction with co-operative processes, give rise to instabilities 
associated with oscillatory behavior (1). Beside periodic behavior, other, more complex 
oscillations have been identified and increasingly studied in recent years (1), Among 
these complex oscillations the most commonly encountered are bursting oscillations and 
aperiodic oscillation (chaos). In many practical situations it is interesting to enhance the 
appearance of chaos in order to favor process performance such as mixing of fluids or 
achieving high rate of heat transfer in some process industries (132), However, in other 
situations chaos may be undesirable, such as mechanical systems where chaos causes 
fatigue failure and also temperature oscillations outside safe regions in thermal systems. 

In physiological applications, several authors (132 - 133) have discussed the 
question of whether chaotic behavior constitutes evidence for pathological behavior of 
die system or whether it indicates healthy variability universally found in living 
organisms and the whole of nature in general. There has been increasing evidence to 
support the case that chaos plays a positive role in the physiology ofthe organism 
Goldberger and co-workers (132, 136) stated that chaos is a healthy phenomenon 
because it provides the organism with an .""information-rich (broadband) state" and 
"spectral reserve". However one of the fundamental aspects of chaos is that many 
different possible behavior are simultaneously present in the system dynamics. A 
particular manifestation of this is the fact that there are typically an infinite number of 
unstable periodic orbits that co-exist with the chaotic dynamics (137, 138). 

The presence of chaos may be a great advantage for control in a variety of 
situations. When using small or large controls for non-chaotic systems, we are usually 
stuck with whatever system performance already exists. In a chaotic system on the other 
hand, we are free to choose between a large variety of dynamical behavior The 
interested in the investigation ofthe problem of chaos using feedback control methods 
has started recently (139-141). These methods needs the knowledge ofthe return map 
of the system and works by perturbing the system state in such a way that it leads to the 
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desired fixed state. Beside the feedback methods. There is a possibility to stabilize 
periodic orbits by nonfeedback methods (142, 143). This interesting technique presents 
the advantage of being much easier to implement It is consists of the application of 
resonant periodic parametric perturbations, that effectively stabilize some unstable 
periodic orbits of the system . The effects associated with these perturbations are 
geaerally difficult to predict nevertheless it is easy to implement, From another p oint of 
view this technique is a common way - naturally occurring way- to regulate some 
physiological processes of great interest in living organisms. For example the secretion 
of hormones (like acetylecholine) is a periodic process (116). 

To investigate the effects of small periodic perturbation on chaotic behavior, Li et 
al. (144), tested the dynamic behavior of Dictryqstelium cells comprising variable 
proportions of cells from two populations, one chaotic and the other periodic. For each 
population cells synthesize and secrete c-AMP according to Eqs 23-27 with one 
equation for the fraction of active c-AMP receptor (pr) and one for the substrate ATP 
(a), but the kinetic equation for extracellular c-AMP (y) takes into account the 
production of c-AMP by the two populations present within the mixed suspension, as 
well as the degradation of c-AMP by phosphodiesteiase produced by the two types of 
cells. 

Starting with a homogeneous population of periodic cells (Fi = 1) and increasing 
progressively the proportion F2 of (initially) chaotic cells, a sequence of period-doubling 
bifurcations leading to chaos is found (145) as a function of F2. The physiologically most 
significant result, however , is that the presence of a tiny proportion of periodic cells, 
e.g, of the order of a few %, suffices to suppress the chaotic behavior of the large 
majority of cells present in the suspension (144, 145). Thus, Fig. (18) indicates that the 
presence of 5% periodic cells suffices to transform the (initially) chaotic behavior of 
95% of the cells into complex periodic oscillations. A detailed bifurcation analysis of the 
mixed system shows (6) that such a sensitivity of chaos can be related to the relative 
smailness of the chaotic domain as compared to the domain of periodic behavior in 
parameter space. Mixing the chaotic and periodic cell populations amounts to shifting 
the effective value of control parameter in a homogeneous population out of the range 
of chaos into the range of values corresponding to simple or complex periodic 
oscillations (6). 

To further check the effect of nabring a small proportion of periodic cells with 
chaotic ones, a population of chaotic amoebae was subjected to a small-amplitude 
periodic forcing (6, 145), This was done in the model by adding a sinusoidal input term 
to the kinetic equation for y in Eq. 25 Confirming the results of the mixing of periodic 
and chaotic cells, simulations indicate (Fig. 18 ) that a tiny periodic perturbation of the 
strange attractor is sufficient to transform chaotic into periodic behavior. 

Controlling chaos by small perturbation has also been stadied by Ibrahim (131) 
using die two compartments model described before. Ibrahim examined two types of 
perturbing functions : sinusoidal and square function. This investigation has shown that 
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Fig. (18) Suppression of chaos by a, small amplitude p«riodio 
foraing in the modal for c-AMP signaling [ rof. 144] 

regular motion (periodic) could be obtained using small perturbation regardless of 
the shape of perturbed regular, function. In the case of excitation with fixed frequency, 
full entrainment occurs at certain forcing amplitude as shown by Fig. (19). Full 
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entrainment of the system requires less amplitude in the case of square forcing than in 
the case of sinusoidal forcmg. Ibrahim (131) has also shown that a regular regions 
interrupted by strips of chaos can emerge from the original unperturbed system in the 
case of excitation using fixed amplitude (changing frequency). Wider periodic windows 
[wider regular regions] was observed with increasing the forcing frequency, 
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Fig.(19) Effects of two different forcing functions on a chaotic 
behavior obtained by the two compartments model [ref. 131] 
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Concluding Remarks 

The study of biochemical oscillations has undergone great advances in the last decade 
An overview of the important examples of biochemical oscillators arc given : PC 
reaction- Glycolytic reaction. - Intracellular Ca++ Oscillations - Mitotic Oscillator 
Acetyecholinesterase reactions - Some fermentation processes and the oscillations in 
Dictyostelium cells. The regular and irregular rhythms were briefly presented together 
with some dynamic models proposed for qualitative study of these systems, 
The experimental studies of PO reaction ( The first example of chaos in biochemical 
systems ) lag , by far, the theoretical work (6) and computational studies. Some of the 
remaining questions involving this reaction focus on the details of the mechanism 
involved with the generation of regular and chaotic oscillations. Recent theoretical 
studies of possible detailed mechanisms bring us closer to answering these questions (36) 
However , these answers can be only conjectures without further experimental work, 
Other unsolved problems involve the role of the critical additives methylene blue and 
dichlorophenoL At dynamical level the origin of the oscillations and the route to chaos 
have only begun to be studied. Further extensive investigation of this system is necessary 
to approach the maximum possible understanding of the nonlinear dynamics of Che PO 
system . Oscillations of the most industrial important microorganisms are also reviewed : 
S. cerviciae and Z. mobilis, one of the important observation is that, the operation of die 
bioreactor under chaotic motion gives higher average substrate conversion, higher 
product yield and higher production rates than for steady state conditions with the snme 
bifurcation parameter (112) . Further understanding of this system (Z. mobilis) needs 
extensive work in the level of modeling and experimental works: the direction of 
modeling development may be directed to more conceptual and little empirical models. 
Experiments should be devoted to the operation of the fennenter at chaotic state to 
examine the theoretical prediction of Elnashaie et al. (112) of higher yield and higher 
conversion rates associated with, the chaotic state. 
With respect to S. cerviciae, the models based on age distribution balance (105) still far 
from complete representation of this important yeast culture oscillations . Actually these 
type of models do not permit mass transfer limitations to be treated separately within the 
model context. This is in contradiction with the fact that mass transfer may play n 

■ remarkable role in such, systems ( 114) specially 02 transfer limitations. 
On the other hand the simple unstructured model given by Ibrahim and Ajbar (114) 

confirmed well with the experimentally observed dissolved oxygen oscillations of such a 
system. Tin's model needed to extend to a macroscopic scale ( bioreactor) rather than the 
floe scale. 
The experimental autonomous oscillations of pH in the acetlylcholmesterase-
acetylcholine system(17), received little attention despite of its importance as a main 
neurotransmitter. The earlier work of Elnashaie et aL ( 120a,b,c) proved that this 
system is very rich in static bifurcation phenomena (multiplicity of steady states: more 
than 25 steady state were discovered - Patterns formation). The recent work of Ibrahim 
and Elnashaie proved that this system could be used as and important example for 
different type of simple and complex modes of oscillations and strange periodic and 
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chaotic behavior. An expensive attention should be paid to prove experimentally that 
dynamical richness of the system. 
The function of glycolytic oscillations remains unclear, although it has been suggested 
that they may enhance the thennodynamic efficiency of glycolysis (146), or the 
ATP/ADP ratio (68) in the ATP- producing pathway. These oscillations could well be 
merely an accidental consequence of peculiar regulation of phosphofiuctokinase ; a 
similar view may also hold for the oscillatory peroxidase reaction. Even so, the virtue of 
this systems would be to provide highly useful models for biochemical oscillations that 
can be studied in vitro . 
The existence of as optimal pattern of pulsatile stimulation by c-AMP signals in 
dictyostelium can be related to the optimal frequency observed in the action of a number 
of hormones (147-149) whose secretion also follows a pulsatile pattern. It is noteworthy 
that in the model based on receptor desensitization vhich applies both to c-AMP and 
hormonal signaling , the optimal periodic signal proves L-iore effective than random or 
chaotic pulstile stimuli(150). 
The physiological function of biochemical oscillations has been clarified to various 
degrees . The clearest and most important case is that of the cell division cycle which 
plays a major role in development. Moreover, perturbations of the continuous 
biochemical oscillator controlling mitosis may lead to cell cycle arrest or may conversely 
be involved in abnormal cell proliferation. As to Ca2* oscillations, their effects only begin 
to be investigated; most of the work so far has indeed been devoted to the 
characterization of the oscillatory phenomenon. It appears that Ca2+ oscillations could be 
encoded in terms of their frequency( 18-22,73,80) ; the latter indeed rises with the level 
of stimulation by hormones or neurotransmitters. Oscillations in cytosolic Ca2+ are often 
accompanied by Ca2* waves propagating within the cell from the site of stimiilation(74-
77), these waves could serve in intracellular signaling as well as in propagating signals 
from cell to cell. 
At the cellular level, the "aperiodic signaling" properties observed (123)duriag 
aggregation on agar in the Dictyostelium mutant Fr 17 could provide an example of 
autonomous, biochemical chaos. Attempts at characterizing in terms of chaos the 
behavior of this mutant in cell suspensions have failed, however, since rather regular 
oscillations instead of aperiodic behavior were observed( 130). Because this result could 
well be due to the suppression of chaos by the strong coupling with some periodic cells 
in the mixed suspension(l45,146), further studies of the chaotic mutant of Dictyostehn 
should best be carried out during aggregation on agar, as originally considered by 
Durston(128) . Any center behaving in a chaotic manner would then be capable of 
expressing its aperiodic nature in the absence of the strong coupling that takes place in 
cell suspensions. 

The analysis of models for biochemical oscillations throws light on the molecular 
mechanisms of periodic behavior and clarifies the conditions in which simple periodic 
oscillations give way to more complex oscillatory phenomena, including chaos . With 
regard to periodic behavior, although end product inhibition can in principle give rise to 
limit cycle oscillationsfliljlSZ), the most prevalent type of regulation involved in 
generating the phenomenon is positive feedback(12). Such is the case of the 
phosphoiiictokinase reaction and for c- AMP signaling in Dictyostelium, The regulatory 
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mechanisms which underlie Ca2* oscillations also appear to include posmVr feedback m 
the form of Ca2+ -induced Ca*+ release . As to the mitotic oscillator, seme models are 
again based on positive feedback, via the ( not yet fufly characterized) mtocatahtic 
regulation of cdc2 3rinase(90-92), but other rrodels(6,93) show that oscillation may result 
solely from the delayed negative feedback present in the interactions between cyciin and 
cdc2 kinase. Required in all these oscillator}' mechanisms is a miaimurn degree of 
nonlinearity. 

A recurrent finding in all models investigated for complex osculations is that 
however complex the regulatory structure of the biochemical system may be, simple 
periodic oscillations by far remain the most common mode of dynamic behavior, 
followed by complex periodic oscillations in the form of bursting. Th« occurrence of 
multiple stable limit cycles and chaos is restricted to much smaller domains in parameter 
space. This may explain die fact that for most oscillations observed in biological systems, 
at least in autonomous conditions periodic behavior prevails over chaos. 
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