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ABSTRACT

C.haos is th§ word used to represent apericdic oscillations , apparently random
behavior appearing in a system not subject to stochastic perturbation but entirely
governe.d b.y- a deterministic dynamic law. It is intimately related to periodic oscillation
and_ periodicity may decompose to chaos when some varying parameter constraining ar;
oscillatory system crosses a critical value. The resulting complex chaotic behavior may
be regarded as periodic but with a repetition time approaching infinity.  Indeed, one

of the {najor routes from periodicity to chaos involves a repetitive doubling of the period
as the bifurcation parameter is varied.

INTRODUCTION

While the classical “phenomenoclogical” definition of the term “chaos” means
absence of order and unpredictability, the modern definition of chaos is based on non-
"linear mathematics whose principles were anticipated during the late 19th century by
Poincare , but made mathematically accessible by Lofénz in 1963 in a paperin the
Journal of Atmospheric Sciences with the title “Deterministic nonperiodic flow “(2).
Today, chaos is defined.as unforeseen behavior in a deterministic system or to say it in a
-more colloquial form :. “chaos is..apparently lawless behavior totally ruled by
(deterministic) laws (3)”. In 1987 Skarda and Freeman (4) brought the definition down
to one phrase when they described chaos as “pseudorandom noise”. Generally the word
chaos refers to low-dimensional zperiodic signals , .while the term noise is used to
describe behavior resuiting from very many degrees of freedom (3). The amplitudes
and/or periods of the individual cycles of a chaotic behavior look to be random and are
unpredictable and irreproducible over an extended period of time. A chaotic system will
remain apparently noisy regardless of how well experimental conditions are controtled,
However a chaotic behavior results from a quite ordinary deterministic dynamic law and
has considerable order related to the presence of z so-called strange atiractor that
attracts trajectories in the same way as do simpler attractors such as steady state or limit
cycle. Order is present because a chaotic waveform stays within a finite region in phase
space in the close neighborhood of the strange attractor (3).
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The reason why oscillatory behaviors are so common in biochemical biclogical
systems stems from their regulatory properties, which were developed and selected in the
course of evolution. Positive as well as negative regulatory feedback provide a source of
nonlinearity which, in conjunction with cooperative processes, gives rise to instabilities
associated with oscillatory behavior. Such a source of nonlinearity due to regulatory
feedback i3 lacking in chemical systems, which are not subjected to evolutionary
pressure . However, this does not rule out the existence of nonlinear, activating or
inhibitory processes in chemical kinetics, but these processes are uncommon and remain
“gratuitous” as they do not have any physiological role (1). Besides periodic behavior,
other, more complex osciilatory phenomena have been identified and increasingly studied
in recent years, Among these phenomena are comp' - ;-eriodic oscillations (bursting
oscillation) and aperiodic oscillations (chaotic or strange norn-chactic oscillations) .From
a mechanistic point of view, two major routes leading to bursting and strange oscillations
have been identified (6). These two major types of complex oscillations arise either from
the periodic forcing of an oscillatory system, or from the interaction of at [east two
instability generating mechanismg within the same system. In contrast to.the former
scenario, which has been followed in many experimental and theoretical studies devoted
to chaos in biclogy, particularly in biochemical and reurobilogical system (7,8) chaos
obtained following the second route is autonomous as it occurs in the absence of
periodic forcing,

The unpredictability of a chaotic behavior results because trajectories starting from
arbitrarily very close initial conditions diverge . The measure of this divergence is the
Lyapounov exponent, The fundamental mathematical definition of a chaotic system is
cne with at least a pogitive Lyapounov exponent ( 4,5 ). This definition and similar
meagures can be calculated for an experimental waveform, but practical problems often
arise that cloud their interpretation. Chaos is thus usually identified in an experimental
system or simulation by construction of sorts of maps (e.g. Poincare maps) and by
investigation of the route from periodicity to aperiodicity.

Although it is also encountered in mechanical , physical , chemical and
electrochemical systems, rhythmic behavior can be viewed as a basic property of living
organisms. Oscillations ‘indeed occur at all levels of biological organization (5), with
periods ranging from milliseconds (neurons) to seconds (cardiac cells), minutes
(oscillatery enzyme) , hours (pulsatile hormone secretion), 24 h. (Circadian rhythms),
weeks {ovarian cycle) and years (circannual rhythms, epidemiological processes and
predator-prey interaction in ecology).
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I- Oscillations of Biochemical Systems

The number of experimentally observed oscillations in biochemical systems did not
significantly change during the decade following 19735, when cyclic AMP (c-AMP)
oscillations were observed in the slime meld Dictyostelium discoidens (9) . Some ten
years before, around 1965, oscillations were demonstrated in glycolysis, first in intact
yeast cells and then i yeast (and later muscle) extracts {10-14) . Around the same time
oscillations are also found in the peroxidase reaction (15) and in mitochondria (12, 16).
Studies of the latter oscillations were , however, not pursued much beyond their initial-
characterization oscillation were also found in acetylcholinesterase acetylcholine system
(1.

In 1985 (18) , oscillations in intracellular ca”™ were added to the list of periodic
phenomena observed at the cellular level (19-22). These widespread oscillation in
cytosolic ca™ differ from those involving voltage-dependent membrane conductances in
electrically excitable cells.

Recent experimental advances have thrown light on the oscillator which controls the
onset of mitosis in eukaryotic cells. Evidence which has accumulated in the last few years
points to the existence of a contintious biochemical oscillator underlyin g the cell-division
cycle in embryonic cells (23).

The experimental and theoretical studies of the most important exaraples of periodic
and/or aperiodic bekavior in biochernical systems will be discussed in this section,

}-1 The Peroxidase - Oxidase Reaction

The reaction in question is the peroxidase-oxidase (PO) reaction, which is the

oxidation of organic electron donors by molecular oxygen, catalyzed by the enzyme
horseradish perioxidase when this reaction takes place in a flow system with reduced
nicotinamide adenine dinucleotide (NADH) as the reactant, the concentrations of
reactants (oxygen and NADH) as well as some enzyme intermediates can be seen to
oscillate with periods ranging from several minutes to about an hour, depeading on the
experimental conditicn.
. Yamazaki and co-workers discovered (15) in 1965 that the perioxidase-catalyzed
oxidation of NADH occurs via damped oscillations when oxygen is supplied
continuously by bubbling a mixture of oxygen and nitrogen through the reaction mixture.
A very similar system, where the bubbling of oxygen through the solution is replaced by
diffusion through the gasfliquid interface from a gas head space, was shown to exhibit
bistability, ie. the existence of two simultaneously stable steady states for the same
oxygen concentration in the gas phase.(24) . Temporary perturbations in the oxygen
concentration in the gas phase could induce reversibie switches from one steady state to
the other. The bistability phenomenon is thought to be due to inhibition of the enzyme by
Oa. '

Degen showed(25) somewhat later (1969) that damped oscillations also could be
obtained using the substrates dibydroxyfumaric acid and indoleacetic acid instead of
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NADH. The oscillations were accompanied by measurable chemiluminescence. The
chemiluminescence was ascribed to free-radical mtermediates and taken as evidence of
the presence of autocatalysis in the reaction mechanism.

Sustained oscillations in the PO reaction were first obtained by Nakamuraz et al (26)
using NADPH as the substrate; NADPH was regenerated from the oxidized form
(NADP") by glicose-6-phosphate and glucose-6-phosphate dehydrogenase. Sustamed
oscillations were found only when the modifiers 2,4-dichlorphenol (DCP) and methylene
blue (MB) were present, Olsen and Degn later reported sustained oscillations (27) with a
constant infusion of NADH, thus demonstrating that ghlucose-6-phosphate
dehydrogenase was unnecessary to sustain the oscillations (See Fig.1). However, these
authors found that the presence of DCP {and, perhaps, MP) were critical. Olsen and
Degn (27) in 1978 provided further evidence that the oscillatory behavior is more likely
due to autocatalysis than to substrate inhibition by oxygen.
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Fig. (1) Oscillatory behavicr in the peroxidase-NADH-O, reaction { from L.E. Gisen and H.
Depn , Biochim, Biophys. Acta , 523, P 321 (1978)}
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Observations of chaos: Olsen and Degn observed in 1977 that the waveform of the
PO oscillations depends strongly on the concentration of peroxidase {28). Simple
periodic oscillations with period of about 5 min were obtained at enzyme concentrations
of about 1 uM, whereas bursting oscillations with periods of up to 60 min wers seen at
enzyme concentration below 0.5pM. The oscillations were aperiodic and irregular at
enzyme concentration slightly above 0.5 pM (Fig. 2). A smooth curve fitted to the
points in 8 next-amplitude map of the data was used to carry out symbolic dynamics, a
period-three cycle was found for certain injtial conditions. The theorem of Li and Yorke
(29) that the existence of a pericd-three oscillation implies chaos was then used to argue
that the irregular oscillations were in fact chaotic. This observation was made less than a
year after publication of the pioneering paper by Rossler (30) suggesting that chaos
might be found in chemical reactions. Schmiz, Graziani and Hudsoa reported
observations of chaos in the BZ reaction (31) only a few months after its observation in
the PO reaction.

The PO reaction remains as of this writing the only enzyme reaction shown to
behave chaotically without the imposition of periodic forcing. Markus, Kuschmitz and
Hess (32) have shown that the giycolytic reaction exhibits a chaotic respons:: when the
supply of glucose is periodic. However, although the existence of autonomous chaos in
glycolysis has been  predicted theorstically (33), there is still no experimental

verification.
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Fig. (2) Chacs in the FO reaction . Experimental conditions have
bean found in referenca (2B)

TESCE, Vel.26, No.2 | 115 - Tuby 2000



Application of the theorem of Li and Yorke (29) to the next-amplitude maps of the
aperiodic oscillations in the PO reaction remamed for 15 years the only experimental
evidence for chaos in this reaction. This experimental evidence was supported by
numerical simulations which yielded next-amplitude maps that were very similar to the
experimental tmaps. Recent experiments by Geest et al (34) have demonstrated that
chaos in the PO reaction arises by the well-kmown period-doublng route as the
concentration of DCP is varied over a critical range (see Fig.3) . A similar perod-
doubling route to chaos has been predicted from simuiations with a detailed model of the
PO reaction for variations of the enzyme concentration (35). This prediction has yet to
be verified experimentally; however,the Lyapounov exponent and fractal dimension were
computed in a firther study by Geest et al. (1) for the experimental data and compared
with those obtained from models of the reaction. The Lyapounov exponent measures the
average rate at which two initially close trajectorie: . nverge or diverge. A positive
exponent implies chacs, and hence the Lyapounov exponents computed from the time
series by Geest et al. {34) suggest chaotic motion.
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Fig. (3) Two- dlmensicnal projections of phase plots in the oxygen concentration as DCP is
varied showing : a) perisd 1 ; b) period 2 ; c) peried 4 ; d) chaos.. Ref.(34)
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The fractal dimension measures the information needed to specify the posiion ¢f a poin:
On an atiractor to within a given accuracy and hence, in some sense, expresses the
complexity of the motion. Simple types of motion have low-integer dimensions. For
exampie, the dimension of a steady state is zero whereas a limit cycle oscillation has a
dimension of one. Chaotic motions usually have finite but non-integer dunensions, atso
known as fractal dimensions. Dimensions in the range of2.45 to 2.7 obtained for the
experimental data are indicative of chaotic motion and are also strikingly in accord with
theoretical values previously predicted from a simple model of the PO reaction . These
recent experimental results thus confirm that the irregular oscillations observed by Olsen
and Degpn in 1977 are indeed chaotic,

Recent experiments at Stanford University (36) have revealed the existence of
quasiperiodic oscillations in the PO reaction using the sume experimental configuration
as Olsen and Degn; whether or not this quasiperiodicity is associated with a different
route to chaos is presently unknows. Both period doubling and quasiperiodicity are well-
known routes to chaos, and both have been found to be assoclated with chaos in models
of the PO reaction.

Theoretical understanding of the kinetics of the PO reaction is quire detsiled, Much
of this study has been based upon the early work of Olsen and Degn (27) whe propased
a four-variable model composed of two coupled autocatalytic cycles. Furthey computer
simulations and theoretical explanations of the behavior of this model were given by
Degn, Olsen and Perram {37), so this model has come to be known. as the DOP model,
Degn et al, reported in their 1979 paper that the Dop model seemed to be incapable of
supporting chaotic behavior. Later work by Larter et al (38, 39) showed that chaos
could, im fact, be found within narrow ranges of parameter values, Olsen (40) suggested
a slightly modified model prior to this discovery to explain the existence of chaos in the
PO reaction.

Several groups snnultaneously were calTying out computer simulation studies of
detailed models based on the twenty or so possible reaction steps which may ocour in
the PO reaction. Yokota and Yamnzak (41) proposed a detailed mechanism and found
some agreement between simulations based on it and the induction kinetics, but never
reported observing oscillatory behavior. Fed’kina, Brounkova and Ataullakhanov (42)
studied a similar mechanism by reducing it to a subset of approximate rate equations for
the two species H;O, and NAD. Oscillatory behavior was found in this (greatly reduced)
subsystem. Using 2 formalism lmown as stoichiometric network analysis, Aguda and
Clarke (43) extracted a subset of ten crucial steps from the twenty possible reactions and
showed that these ten steps are sufficient to explain the bistability and damped
oscillations. Later studies (44) showed that the ten-step mechanism also can explain the
existence of sustained oscillations. More recently, the addition of two more steps (35)
has led to the discovery of chaotic behavior in the latest detailed model It is interesting
that certain details ofthe experimental observations which were not reproduced by the
four-variable models are, in fact, seen in simulations with the detailed mechanisms, A
detailed description of the modeling and simulation efforts are found in reference (1) in
the article written by Larter, Olsen, Steinmetz and Geest.
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Computational studies of a detailed model by Aguda and Larter (44) led them to
~ predict that under certain conditions, the PO reaction might possess coexisting stable:
states, one oscillatory and the other stationary . This type of bistability between a Limit
cycle and a steady state also is known as a *“hard excitation” . Aguda, Hofmann Frisch
and OQlsen (45) confirmed this prediction experimentally . Specifically, it had been
predicted that a perturbation of the steady state by a sudden cut-off of the oxygen flow
would lead to a transition from the steady state to the coexisting oscillatory state.
Furthermore, a transition from the oscillatory state to the steady state could be induced
by perturbing the reaction with a spike of H,0,. The transition from one state to the
other was found to be reversible, as predicted by the simulations.

Scme gquantitative disagreement between experimental observations and the
computatiopal predictions were noted, however. ExpeTmentally, the steady state was
found to correspond to an oxygen concentration midaw:.y between the minimum and
maximum O, concentrations of the oscillatory state, as opposed to the simulations which
predicted the steady state O, concentration to be lower than the minimum O, level of the
oscillatory state. The computational study further predicted that the observed bistability
was due to an S-shaped steady-state curve in which the upper branch undergoes a Hopf
bifurcation. The experimental results seem to suggest that if an S-shaped steady-state
curve underlies the observed dynamics, them [Q-] is not the variable which is multiple
vajued. Rather , the S-shaped curve might correspond to multiple steady state values in
one of the other species, each of which yields the same, or nearly the same, O,
concentration. An aitemative and equally valid explanation of the experimental results
would involve a stable limit cycle swrrounding an unstable limit cycle, which itself
surrounds a stable steady state, i.e, bistability would exist between a locally stable steady
state and a surrounding stable limit ¢cycle. No evidence for this latter scenario was found
in the computational studies, but it cannot be nuled out experimentally.

Lazar and Ross have carried out studies (46, 47) of the effect of periedic
perturbations of the oxygen inlet flow on the PO reaction and have found that these
perturbations affect the overall reaction rate and the free-energy dissipation. The system
studied was similar to that used by Nakamwura et al. (26) in that a second enzyme,
glucose-6-phosphate dehydrogenase, was used to regenerate NADH from NAD". (The
glucose-G-phosphate dehydrogenase used by Lazar and Ross (46, 47) was different from
the enzyme used by Nakamura et al, (26) in that it reduces NAD" and NADP" equally
weil). The rate of reaction in these experiments was determined from the slope of the
[NADH] time series while the free energy of reaction was calculated from the defining
equation and the measured concentrations of substrates, The perturbation frequency was
varied, and it was found that while all frequencies lower the dissipaticn (and hence
incrzase the efficiency) the smallest effect occurred for frequencies near the autonomous
frequency of the reaction. This latter observation was attributed to the fact that a
perturbation at the autonomous frequency increases the free emergy but lowers the
reaction rate, and that these two effects compensate for each other thus causing the
dissipation to remain nearly unchanged.

One aspect of the experimental investigation oscillations and chaos in the PO
resction that is stil not well understood is the role which the additives 2.4-
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dichlorophenol (DCP) and methylene blue (MB) play in the oscillatory mechanism (48).
Olsen and Degn (27) found that sustained oscillations in the PO reaction can be obtained
with only DCP present. However, these oscillations were not stable over long times
unless MB also was present,

Recently Seveik and Dunford (49) published kinetic studies of the catalysis of
NADH oxidation by MB itself They pointed out that a related reaction, the MB
catalyzed oxidation of sodium sulfide, was found to be oscillatory by Burger and Field
{(50) in this latter reaction the MB catalysis was thought to occur autocatalytically.
Seveik and Dunford also pointed out that the flow rate of O, into the reaction mixture is
a critical parameter in both the Burger and Field experiment and in the experimental
configuration leading to oscillations in the PO reaction. Their studies of MB catalysis of
NADH oxidation were carried out oxygen flow rates outside the range of values where
oscillations are to be expected.

The Seveik-Dunford results raise the issue of whether it is possible for MB to play a
role in the PO mechanism as a second catalyst for the oxidation of NADH (peroxidase is
the first catalyst). Evidence against this possibility is given by the experiments of Degn
(25) which showed that nearly sustained oscillations may be obtained without MB when
substrates other than NADH, such as dihydroxyfumaric acid and indoleacetic acid, are
used. However, chaotic oscillations were never observed with these latter substrates;
hence MB may play a role in the more complex behavior observed in the PO reaction., If
the role of MB in the PO reaction is to provide an additional autocatalytic routs to
oxidation of the substrate {as it does in the Burger-Field reaction), this could explain the
existence of chaos in the presence of MB . More experiments are needed to verify these
speculations.

Study of the PO reaction has been undertaken using both detailed theorstical and
computational investigations as well as some experimental approaches. However, the
experimental study lags, by far, the theoretical and computational studies, and the time is
now ripe to carry out a new round of detailed experimental investigations. Achieving a
higher degree of understanding of this reaction is important since the PO reaction is only
the second known example of a homogeneous chemical oscillator that undergoes a well-
characterized transition to chaos [BZ reaction is the first example (*6)].

Some of the remaming questions involving this reaction focus on the details of the
mechanism involved with the generation of regular and chaotic oscillations. The question
of the roles played by the various enzyme species remain unconfirmed . Recent
theoretical studies of possible detailed mechanisms bring us closer to answering these
questions. Other unsolved problems involve the role of the critical additives methylene
blue (MB) and dichlorophenol (DCP) . From dynamical point of view, the origin of the
oscillations and the route to chaos have only begum to be studied. Further extensive
investigation of this system is necessary to reach the possible maximum understanding of
the nonlinear dynamics of the PO reaction. ) N
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-2 Giycolytic Oscillations

To this date, glycolytic oscillations remam the prototype of periodic behavior
originating from the regulation of an enzyme reaction. In yeast, glycolytic oscillations
occur with a period of 5 to 10 minutes when a substrate such glucose or fructose is
injected at an appropriate rate(66) . oscillations also occur in muscle extracts with a
somewhat longer period of the order of 20 minutes (67, 68).

It was demonstrated soon afier this observation that glycolytic escillations originate
from the reaction catalyzed by phosphofructokinase (PFK), a key regulatory enzyme
controlling the glycolytic flux (10-12) . The PFK oscillations stem from the pecnlair
regulation of this allosteric enzyme: PFK is mdeed activated by ADP, one of the rezction
products. In muscle , autocatalysis is primarily exerted by the other product of the
reaction , fructose-1,6-P; (67, 68).

The most conspicuous property of glycolytic osci';zions is their control by the
substrate injection rate. The range of constant input rates producing oscillations is
bounded by two critical values (66) . The period of the oscillations diminishes while the
amplitude passes through a madmum as the input rate increases from the first up to the
second critical value.

/
r

P
Fig. (4) Schematic represectation of a product-activated, allosteric enzyme reaction. The
substrate S, injected at a constant rate, binds to the states R and T of the enzyme
and is subsequently traosformed into product P.The productis removed at a
rate proportional io its concentration and also promotes the transition from the
less reactive (T) to the more reactive (R ) enzyme state.The enzyme contains

multiple subunits which undergo the conformational transition between the R
and T states in n concerted maaner.
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Followmng the proposal of phenomenological, enzymatic models or glycolytic
oscillations based on the positive feedback exerted by the reaction product, {69, 70} 2
model taking explicitly into account the allosteric nature of the product-activated enzyme
was analyzed for the PFK reaction (6, 71) . The model (see Fig. 4 ) is governed by two
differential equations which describe the time evolution of the substrate, o and
producty normalized concentrations im continuously stirred yeast extracts:

de

Voo ‘ (D
L = qop-y @
with
b= a(l+aXl+y)? )
- L+(l+a) (1+9)? '

In these equations, v and o are the normslized substrate input and maximum
enzyme reaction rate, respectively; q is a dimensionless parameter , and L is the allosteric
constant closely related to the degree of cooperatively of allosteric interactions between
enzyme subunits. Equation 3 gives the siruplest form of rate finction for the produat-
activated allosteric enzyme, assuming that the enzyme consists of two identical subunits
obeying the concerted transition model of Monod, Wyman and Changeux (72).

Linear stability amalysis of Eqs 1-3 indicates that (71) for appropriate values of the
other parameters, the unique steady state becomes unstabie when the substrate input rate
is between two critical values :

N Y, SVSV,

This simple model can exhibit simple periodic phenomena : Limit cycles simple
bistability (coexistence of stable limit cycle with stable steady stats). Introducing a third
dimension to this system makes the obtaining of complex dynamic behavior : bursting,
chaos, birhythmicity, even trithythmicity possible, This will be coasidered in section LI,

1-3 Intracellular Ca** Oscillations

In a large variety of cells, stbmulation by an external signal such as a hormone or a
neurotransmitter triggers a train of -cytosolic Ca* spikes (9,22) . The period of these
oscillations generally ranges from- seconds {cardiac cells) to minutes (endothelial cells,
fibroblasts, or hepatocytes to cite but a few examples). The frequency of Ca®" oscillations
rises with the degree of stimulation. Below a critical magnitude of stimulation, cytosolic
Ca® settle at a low steady-state level; above a second, higher critical value of the
external stimulus, a high steady-state level of cytosolic Ca® is established . In some cells
such as cardiazc myocytes or pituitary cells, Ca** ascillations can occur spontaneously in
the absence of stinmlation (6).

While the number of experimental studies of Ca® oscillations has rapidly increaced
in the last few years, interest also has been extended ta the spatial aspects of Ca**
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signalling (73) . The propagation of Ca® waves had long been observed in amphibian
eggs after fcrtﬂxzanon (74 . In hepatocytes (75) and endothelml cells (76), a link
between Ca® oscillations and the wave propagation of Ca™ signals has smce been
established. The same link has been demonstrated in cardiac myocytes where Ca™ waves
propagate as a sharp band along the cell, at a rate (77) of the order of 100 ms'. Tn
contrast, Ca** wavesin hepatocytes and endothelial cells propagate as “tides™ (20) with
a progressive increase in Ca® all over the cell, at a rate (75, 76) close to 20 ms™

The mechanism of Ca® oscillations and Ca* wave propagation mvo}ves the
synthesis of inositol 1,4,5-trisphosphate (IP:,) (19, 73). The Ilzvel of this intraceflular
messenger mcreases after stimulation, owing to the activation of phosphoinositidase C
The role of IP; is to mobilize Ca” from an intracellular store. Models for Ca"
oscillations primarily differ according to whether or not they rely on concomitant
oscillations in TP; (78).

In the model proposed by Meyer and Strycer (79) , o: rﬁlatmns orignate from the
elevatmn of the cytosolic Ca** level by IP; and from the activation of IP; synthesis by
Ca™ Such a cross-feedback loop resultsin a global process of self-amplification; Ca*
oscillations are necessarily accompanied by a periodic variation in IP;. Extensions of the
original version of this model have been proposed (21).

A second class of models relies on the process of Ca’ - induced Ca™ release
(CICR) to nccount for Ca® oscﬂlaﬁon (78, 80, 81). Here (see Fig. 5 ) the rise in IP;
tnggers a constant release of Ca** from an IP; sensitive store into the cytosol. Cytosolic
Ca* is tmnsported into a second store, msensrtwe to IP; from which it is eveatually
discharged in a process activated by cytosolic Ca™, the latter CICR. process has been
demonstrated only in cardiac and muscle cells but some evidence for its cccurrence in
other cell types has been obtained .

Stimuius

- Fig. (5) Schematic representation of the model for Ca™ osciliations based ap Ca™
induced Ca™ release . An extraceilular stimulus elicits the synthesis of inositol
1,4,5- trisphosphate (IP; which mobilizes Ca* store from which it is released
in a process activated by cytasolic Ca®* . The latter regulation incapable of
~—~ . Produciag sustalned Ca™* oscillations (Redrawn from ref. 78).
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The model based on CICR, i its simplest form, is governed by two differential
equations which describe the time evolution of cytesolic Ca®* (Z), and

dz
—=v, +v-v,+v,-kZ (4)

dt
dy
—d';=‘fz—-vl (5 )

[+ m ]
Va __TZ__:V] =V, Y s 2 ( 6)
(X;+Z%) (KR +Y7) (KR +2Z")

In the above equations, Va, and V; denote the maximum rates of Ca*" pumping into
the 1P; , insensitive intraceliular store and of Ca™ release into the cytosol. The rates ng
and n; have been written so as to allow for positive cooperatively in pumping aud
release, as well as in the activation of the latter process by cytosolic calcium; K; , Kg and
Ka denote the threshold constants for these processes, while n, mm, and p represent the
Hill coefficients characterizing their degree of cooperatively ( n, m, p2 1). The threshold
constant Kgr and concentration Y are both deﬁned with respect to the total intracelular
velume,

One of the most salient results of the model based on the CICR mechanism is
tepresented in Fig.6 . There, the temporal evolution of cytesolic Ca** is shown at
different values of the parameter 3 associated with increasing levels of stimulation. In the
absence of stimulation, a stable steady state is established, corresponding to a low level
of cytosolic Ca®™ (panel A). Upon incrensing the value of B , the steady state becomes
unstable and oscillations appear, with a frequency that rises with the degree of
stimiation (panels B aud C). Finally , above a critical degree of stimulation, oscillations
disappear and the system evolves towards a stable steady state corre.spondmg to a high
level of cytosohc Ca® (panel D). Similor results are obtained upon raising the level of
extracclluular Ca® (80 81). The sequence of dynsmic behavior predicted by the model in
response to increasing levels of stimulus is observed in many cell types (19-22).

In some cells it appears that the dxstmcnon between the two pools of Ca®, one
sensitive to IP; , and the otherto Ca**, isnot so clenr-cut, in these cells, indeed, Ca®
and IP; behave as co-agonists for the mduchon of Ca™ relense (82), The analysis of

- ‘such a dual regulation of the Ca® channe] indicates that sustained oscillations of
" cytosolic Ca®* may still occur in a one-pool model in these conditions (83),

The model based on CICR can be applied to Ca® wave propagation once the

diffasion of cytosolic Ca*" is taken into account. The analysis shows (78) that waves

"similar to those observed i cardiac cells or in hepatocytes and endothelial cells can
occur, with the observed rates, depending on whether the period of Ca** oscillations is
of the order of seconds, as in cardiac cells , or minutes, as in the latter types of cells, The
model also has been used to gemerate spatial patterns similar to those observed in
cocytes (84).

Most Ca** oscillations observed in the experiments are of the simple rather than
complex periodic (or chaotic) e, In some cells, however, stimulation by certain
agonists triggers a train of Ca®* spikes riding on 1 slower oscillation (see, e.g., ref 73},
such behavmr reminiscent of bursting , suggests the interplay between at Ieast two
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regulatory mechanisms. It iz likely that the slower oscillation mvolves the variation of IP;
while the faster spikes originate from CICR.
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=62 %

3 =90 Ya
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o o P 2 3 o,

Time (min)

Fig. (6) Sustnined oscillations in cytosolic Ca** generated by means of Egs. 4-5 for increasing
values of b measuring the stimolation level in the model based on Ca** - induced Ca®* release (ref.
78) ‘
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I-4 The Mitotic Oscillator

Besides Ca™ oscillations, the most important oscillatory process discovered in celt
biology during the last decade is the biochemical oscillator controlling the onset of
mitosis in eukaryotic cells. Advances in the molecular identification of the mitotic control
system originate, primarily, from biochemical studies performed in frog, sea urchin and
starfish embryos on the one hand (23) and in yeast on the other hand (85). Oscillations in
yeasts should be discussed in section I-5.

While the experimental evidence points to the existence of a continuocus biochemical
oscillator driving the onset of mitosis in rapidly dividing embryonic cells with a
periodicity of the order of 30 min (23), the situation is’ more complex in yeast and
‘somatic cells (83). There, additional feedback processes exist; the mechanism regulating
the onset of mitosis is blocked until a sufficient cell size is reached or processes such as
DNA replication or mitotic spindle formation are completed. Evidence for a continuous
mitotic oscillator has also been obtained in Drosophila where the 13 first nuclear
divisions accur with a period close to 8 min.

In embryonic cells, the cell-divisien cycle is driven by a protein naumed cyclin (23,
86). The progressive accumulation of cyclin leads, through a cascade of biochemical
reactions, to the activation of an enzyme called cde2 kinase (the name originates fom
genetic studies in yeast where a number of cell division cycle-or cdc-mutations have heen
characterized) . The periodic activation of cdc2 kinase nitistes in turn the varions events
associated with cell division, such as breakdown of the nuclear envelope, chromosome
condensation or spindle assembly.

The regulation of cde2 kinase is achieved by n cascade of phosphory]nt;ou-
dephosphorylation reactions (87-89). Several models have recently been proposed for
the mitoticoscillator. Most of them rely (90-92) on the nonlinear, autccatalytic activation
of cde2 kinase for which some experimental evidence exists. However, the analysis of a
minimal cascade model (93) based on experimental observations (94) shows that
autocatalysis is not required for producing oscillations in cde2 kinase activity. In this
model (Fig.7) cyclin is synthesized at a constant rate and activates enzyme E, (a protein
phosphatase, product of the gene cde25) which dephosphorylates the inactive form of
cdc2 kinase (M') and thersby brings it into the active form (M); a protein kinasc (E3)
reverts this activation step. The active form of cdc2 kinasc in turn phosphorylates the
inactive form of a cyclin protease (X*) and thereby brings it into its active site (X); this
activation step is reversed by a phosphatase (E°). The protease X degrades cyclin, and
this step triggers the inactivation of cdc2 kinase. It is possible, and even likely, that the
activation of cyclin protease by cdc2 kinase involves additional phosphorylation-
dephosphorylation cycles (94), such enlargement of the cascade would, however, not
significantly alter its dynamic behavior.
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M = active cdc2 kinase

X = active cyclin protease

Fig.(7) Minimal coscade model for the mitotic oscillator.. The model incorporates
cyclin synthesis, activation of cdc2 kinase by cyclin through a dephesphoylation-
phosphorylation cycle, activation of cyclin protease through a second
phosphorylation-dephosphoylation cycle involving cdc2 kinase, and destruction
of cyctin by the active formof protease X (redrawn from ref. 93).

It has been suggested (23, 94) that the activation of cde2 kinase by cyclin and the
nctivation of cyclin degradation by cdc2 kinase constitute a negative feedback loop
which may result in sustained oscillations. The analysis of the model of Fig.7 shows that
this conjecture holds, provided that threshelds existin the dependence of cdc2 kinase
nctivation on cyclin, and in the activation of cyclin protease by cdc2 kinase (93).

The model of Fig.7 is governed by a set of three differential equations describing the
time evolution of cyclin concentration (C), the fraction of active cdc2 kinase (M), and

the fraction of active cyclin protease (X). |
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(7.8)

®)

(10)

Parameters V,and X; denote the maximum rate and normalized Michaelis constants of
enzyme E: (I = 1, .., 4); v; and v4-denote the input rate and maximum rate of cyclin

degradation by protease X, while constant

kq relates to a relatively negligible,

nonspecific cyclin degradation. It is noteworthy that the only type of nonlinearity in Eqs.
7-10 is of the Michaelian type. These equations nevertheless admit periodic solutions
over a wide range of parameter values, oncs thresholds occur in the activation of M by
C and of X by M . A typical example of oscillatory behavior is shown in Fig.8
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K¥ig. (3) Sustained oscillations generated by means of Egs. 7-10 (n the minimal cascade model for
ibe mitotic oscillater , schematized in Fig. (7). [ref. 93]
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It canbe seen that the progressive rise in cyclin (C) leads to the abrupt activation of
cdc? kinase (M), the latter brings about a sharp rise in cyclin protease (X) after a short
delay, and the latter event triggers the rap:d declime In cyclin. As aresult M drops
precipitousty, followed by a rapid decrease in X. When the rate of cyciin synthesis
exceeds its rate of degradation, the level of cyclin may rise again and a new cycle of
oscillations begins.

Although based on a number of simplifying assumptions, such as disregarding the
formation of complexes between cyclin and cdc2 kinase and the effect ofa second
phosphorylation-dephosphorylation reaction involved in cde2 kinase regulation, the
model described by Eqs, 7-10 nevertheless shows that the negative feedback loop built in
the cascade suffices, in principle, to produce sustained oscillation. The model indicates
the importance of time delays in genmerating limit cyclé Lenavior; these delays are not
introduced in an ad hoc manner into Eq. 7 but result from the existence of thresholds m
the activation curves of cdc2 kinase and cyclin protease (93).-

Autocatalysis can be incorporated into the cascade model of Fig.8 by assummg that
the phosphatase E; is itself activated through phosphorylation by cde2 kinase. The
analysis indicates that sSuch an autocatalytic regulation, although not essential for
oscillations, renders them more abrupt and enlarges the domain of instability in parameter
space.

As the experimeatal study of'the cell cycle is undergoing rapid developments further
insights into the molecular mechanism of the mitotic oscillator can be expected in the
neur future, It should be noted that the current evidence in this biochemical system points
to the occurrence of simple periodic behavior rather than more complex oscillatory
phenomena (6).

I-5 Oscillating fermenters

Continuous cultures of Saccharomyces cerevisise and Zymononas mobilis, two
important industrial microorganisms have long been known to exhibit spontaneous
oscillatory behavior for some range of the bioreactor dilution rates (95-97). The
occurrence of these oscillations adversely affects the optimization and control of the
operation of the biofermenter. A number of experimental and theoretical studies are
reported in the literature on the causes and means of to eliminate this irregular behavior .
One important goal of the experimental studies is the determination of whether these
oscillations are inherent in microbinl cultures or merely caused by undesired variation in
the controlled operating parameters such as pH level, dissolved oxygen levels or other
process variables, Parulekar et al(98) and Porro et al (99) for instance examined the
occurrence of spontaneous oscillations in continuous cultures of the buddmg yeast and
found that the periodic regimes in the chemostat are determined by the dilutjon rate and
the dissolved oxygen concentration (see Fig. 9 ). Munch et al. (100) also showed that
the cell cycle is fundamental in predicting the dynamic behavior of coatinuous cultures of
the microorganism. ‘

Chemostat cultures Z.mobilis, showing sustained oscillations in biomass, product
and substrate are also reported in the literature (97, 101) . Jobses et al. (102) for instance
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reported experimental oscillations in continuous cultures of the microorganism at high
ethanol concentration , and suggested means to eliminate them (see controliing chaos
section IM). Sustained oscillations in microbial cultures have been observed even when
the feed conditions and the culture physical condition, like temperature, agitation speed,
etc. , are maintained constant (99, 103).
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Fig. (9) Spontanecua oscillations of 3. cerevisiae. [ ref 104]
A. Measurements of carben dioxide in tha exhaust gas and the
dissolved oxygen concentration (DOT) in % of the equilibrium valus.
B. HMaasurements of sthanol and scetats.
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This suggests that the oscillatory behavior is probably govemed by microbial
physiology rather these an inhomogenous enviromment. Nielsen and Villadser (104)
mtroduced an explanation to these oscillation in terms of desynchronized cell division.
They gave a verbal model shown by table (1 ):

Table{1): A_verbal model for description of the occurrence of spentaneous
oscillations in_S. Cerevisiae cultnres.

Durtng the single cell phase (undbudded phase) there iz an accumulation of internal storage
carbohydrates In the form of trehalose and glycogen. During the budding phase there is a
high energy demand and the internal storage carbohydrates are mibilised, which results in
very high fhix through the glycolysis. Due to the limited respiratory capacily of the cell this
high flice results in excrefion of ethancl The excercted ethamol can be metabolized by the
unbudded cells together with the glucose (which is present only in a Hmited amount) resuiting
in a higher speclfic growth rate for these cells. Furthermo:  .: the presence of ethanol the
critical -mass for budding will become smailer while the criiical mass for cell division
increases. When the ethanol is exhausted the specific growth rate decreases, and the critical
mass for cefl] division decreases whereas that for budding increases. The variations in the
threshoid values, le. the critical masses for cell division and budding, may give rise to the
Jormation of an attractor which resulls in a stabilization of the partially synchranized culture.

Hjortso and Nielsen (105) based on this verbal model ; argue that periodic behavior in
microbial cultures can be modeled by periodic solution of the age distribution balance.
But due to the difficulties of forming a mathematical model within the age distribution
framework, simulation of spontaneous oscillations has not been done by computer
models which are derived from the concepts of the verbal model (104) . Since the exact
mechanisms behind the occurrence of these oscillations are not filly known at present
time, modeling these oscillations presents a challenging task. This task is further
complicated by the need tn understand the complex interactions between the different
species in the process and the difficulty in quantifying the different rates involved. A
cemputer model based on the bottleneck model (106) was proposed for instance by
Strassle et al. (107) for the synchronization of Saccharomyces cervisaie cultures. Cell
mags for unbudded cells and cell age for budded cells were taken as the characteristics
intercellular variables for the different morphological terms, The spontaneous oscillations
were correctly predicted (108) by the model. However, Strassle et al. (107) divided the
biomass into large number of morphological forms (96 species), and conversion between
the forms is described in a complex fashion. It is therefore difficult from their paper to
extract the kinetics for metamorphosis reaction in the verbal form described by Nielsen
and Villadsen (104).

Cazzador et al (109, 110) discuss a computer model which predicts spontaneous
oscillations of a budding yeast cultures, The model is also based on the desynchronized
cell division mechanisms. In this mode! budded and unbudded cells are described as two
rmorphological forms with the same specific growth rate given by Monod expression. The
vield coefficient of biomass on glicose is, however, different for the two forms, and its
hereby possible to describe oscillations in the glucose concentration when the budding
index (the fraction of budded yeasts) varies. Although Yano and Koga (111) on the other
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hand analyzed the behavior of contnuous culture systems based on several farmentation
kinetics in which the products inhibit the growth rate of the biomass, Repeated
oscillations appear in system in which the inhibitory action of compound is delayed. A
delayed inhibition can be imagined if the imhibitor does not act directly on the
fermentation and thereby directly on its own formation, but directly by inhibiting
another reaction, which is positively linked to the product formation. Jobses et al, (102)
for instance proposed a structured model for oscillation in continuous culture of Z.
mobilis at high ethanol concentrations. The oscillations were modeled by & structured
mathematical model in which ethanol inhibits the maximum specific growth rate
indirectly by mhibiting the synthesis of aa internal growth rate determining compound,

Bifurcation analysis to Jobsis model has been given by Elnashaie et a}, (112) and a
wealth of different oscillations was obtained the simplicity of the morpholowical model
of Cazzador et al, a stable limit cycle is only obtained by this model (174). In a more
abstracted structured dynamical model for microbial cultures aceounts for substrate aud
intermediate product inhibition. Ajbar aad Ibrahim (113) observed a wealth of complex
dynamic phenomena sustained oscillation, quasiperoidic oscillations, wid chaotic
oscillations. Some of these oscillations coexist with high conversion opersting points,

Inspite of its simplicity and validity in bioreactors, unstructured models jiat begin
to be used in modeling oscillatory behavior of bioferments (114), Torahim and Ajbar
started by the analysis of one of the important instability creating mechanisms that is the
substrate inhibition kinetics represented by the so common Haldane  equation. They
proved that this equation is useless in generating oscillation at all {(114) . Ibrahim and
Ajbar developed a new unstructured pseudo homogenous floc mode! that accounts for
substrate inhibition and oxygen lmitation kinetics in eddition to mass transfer linitation
(113). The model may be summarized as follows :

—

. = - dS

S-S = b1 p+ b ik > (1)
dt

<= - 4C

C-C=pyp;+¢y— (12)

0

dt
The normalized rate expressions ;Land ;Lhave the following expressions:

i 2

- S C

H=——— - (3)

'O(1+8+S8/K)(1-C)

-8

b= (4)

z S+B .
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In the case of fixed bulk conditions the system of equations exhibit periodic solutions for
a wide range of model parameter values. The model confirms the impeortance of the DO
levels on the existence of periodic behavior. In the case of varymg the bulk conditions

[Ce =Cq +Am sin wt] the system exhibits very rich dynamic characteristics
of the chaotic behavior. Birhythmicity and even trirhythmicity have been observed as
shown by Fig.( 10 )
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I-6 Acetylcholinesterase Enzyme and Oscillating pH

Acetylcholinesterase enzyme acts on acetylcholine producing choline and acetic acid
(which is fully ionized to acetate ions and H' ). This enzyme plays a recognized role in
nerve excitation (116). Acetylcholine is secreted by neurons in many areas of the brain,
but specifically by the large pyramidat cells of the motor cortex, and by many different
neurons that mnervate the skeletal muscles. A siguificant portion of this enzyme is found
in intercellular compartments (117). In most cases, acetylcholine has excitatory effects
(115).

In enzyme membrane systems, the local production of hydrogen ions Jecreases the
pH, and owing to the amphoteric properties of the proteinaceous membran>, the lower
the pH, the lower the density of the negative fixed charges in the membrane {118). Local
pH changes mside an artificial enzyme membrane were first shown by Geldman et al.
(119). The potential differences from acetylcholinesterase membrane cxhibits similar
electrical response to the behavior observed with excitable membranes {17). The stendy
state potential resulting from the enzyme activity for increasing and decicasicg substrate
concentrations exhibits a hysteresis behavior . Because of the autocatalytic effect
resulting from the production of hydrogen ions and the existence of diftusional
resistances, hysteresis phenomenon develops in definite range of parameters, and betause
of the amphoteric properties of the membrane, the hysteresis of the internal pHis
transformed into a hysteresis in membrane potential (17). In addition, the nonmonotonic
behavior of the enzyme reaction rate coupled with the diffusion constraints causes
instabilities and oscillatory behavior in membrane potestial and in acetylcholine
concentration level.

The static bifurcation problems of this enzyme system has been talked by Elnashaie
et al. (120-122) almost fifteen years ago. In the light of recent advances in fundamental
knowledge and techniques regarding such dynamical systems, the problem is
reinvestigated by Ibrahim and Elnashaie (54) on a higher level of model formulation and
analysis of the results, and a wealth of new dynamic features are observed by Ibrahim et
al. (54).

The problem investigated is that of the enzymatic
reaction S—P P, +H" '

where in the case of acetylcholinesterase

S denotes acetylcholine { CH;CO.0(CH,):N (CHa)s}
P, denotes choline {HO{CH,);N"(CH;);}

P, denotes acetate {CH;COO")

The reaction is considered to take place in a constant flow isothermal continuous
tank reactor (CSTR) which is divided by a semipermeable membrane into two
compartments as shown in Fig.(11). The reaction takes place in the liquid phase
according to the following rate equation (1)
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R(S,H) = ——— ValSl___ (15)
(ST+(ST / K; + K, {Ky +[H] +3 /K4 )/ (H]

where [S] is the substrate concentration, [H] is the hydrogen ions concentration, Ve
is the maximum reaction rate per unit mass of the enzyme; K;, K,, Ky are equilibrium
constanis and K is an imhibition constant. If the active volumes of the compartments are
Vi, Vi1 and the enzyme concentrations in both compartments are equal to E in units of
enzyme mass per unit of active volume, the volumetric flow rate is q. Usimg the
pesudosteady state assumption for hydroxyl ions (ie. [OH}/dt =0) then the material
balance equations for the two compartments can be summarized in dimensionless form as
follows [for more details regarding the model derivation see reference (54).

Fig. (11) The two compartments model

For hydrogen:
dh;
—d—T— au(hrh] }-b;(ln(hrhz)-a]ﬁ ( Iihe 1)’111)+Bh1'1+bﬁ0503( 1/h,- Uhl) (16)
For substrate:
de '
= =ay(srsy) - bafs;s1) - By (17)

where j=1,2 denotes compartments | and 2 respectively, h=[H}/Ks , T=t.q/V: , a=1,2;
= 0, fdenotes feed conditions, Vg = Vi/Vz, b1 =1, by =-Vz, aou =8 0on Awlq, £= Kw’
kh,Bh"VEVlf(th)EH—a‘HAqu, a4= aAqu B V EV[/(K.C]_)
1S]1/K, av =K/ K and & =Ky K. The dimensionless rate of reaction is given by :
S.
- j (18)

5 +s}.ai +(i+hj +h3".8)/hj
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The two compartments model is thus represented by four differential equations with
four state variables hy, hs, s, s; which describe the dynamics of hydrogea ions and
substrate concentrations in the two compartments.

Different dynamical models were obtained by this model including : limit cycle-
bistability (point attractor and limit cycle) - chaos followed the period doubling sequence
- chaos termination by crisis points - periodic windows interrupted chaotic sequence,

The transition from small amplitude oscillation to bursting oscillation proved to be
quite complex (54). Fig.(12) shows an interesting feature with regard to the difference
between the pH values in the two compartments (pH;, pH, ) respectively:

ApH = pH; - pH,

It is clear from the figure that ApH changes its sign twice during each cycle (period),
which means that the H' ions transfer between the two compartments and changes their
direction twice every cycle. This alternating sign of &4 pH is associated with the bursting
oscillation shown by the figure. The two modes of sustained oscillations observed in this
region of parameter values may give insight into the common physioiogical prenomenon
of slow wave rhythm of membrane potential that characterizes the self-excitation of some
of the smooth muscles owing to the acetylcholinesterase activity (116). More complex
dynamical modes of this system should be discussed in section IT
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Fig. {12) Dynamic charactexriatics for two different valuas of 8, .
obtained from ref. 54 .
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1-7 Periodic Behayior of Dictyostelium Cells

The cellular slime model Dictyostelium discoideum represents a prototype of spatio-
temporal organization at the cellular level These cells indeed aggregate afier starvation,
by a chemotactic response to pulses of cyclic -AMP (c-AMP) emitted by centers with a
periodicity of 5-10 min; as a result of such a periodicity in c-AMP secretion, cells collect
around the aggregation centers in a wavelike maaner (120-122) . From the point of view
of temporal organization, the periodic synthesis of c-AMP in Dictyostelium represents a
remarkable example biological rhythm involved in intercellular commumication. With
regard to the main theme of this volume, of particular interest is the possibility that in
some cases, the signaling system in Dictyostelium may function m an aperiodic, chaotic
manner. The periodic and aperiedic oscillatory propertie- - "the c-AMP signaling system
will be examined in turn below. _

Model for c-AMP Signaling Based on Receptor Desensitization :The mechanism

of ¢c-AMP oscillations in Dictyostelium rests on the positive feedback exerted by
extracellular c-AMP on its intraceilular production. Upon

Fig.(13) Mode! for c-AIMP signaling in Dictyostelium based on receptor desensitization
. Extracellular c-AMP binds te the active ® state of the receptor and thereby
elicits the activation of adenylate cyclase (C) which synthesis c-AVP from
ATP. Binding of c-AIMP to the receptor in the R state induces its transition
to the desensitization (D) state which cannot activate the cyclase. Other
arrows refer to ATP syathesis, intracellular c-AMP transport into the
extracellular medium, and c-AMP bydrolysis by phosphodiesterase (from ref
123},
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Binding to a cell surface receptor, c-AMP triggers the activation of adenylate

cyclase which produces ¢-AMP from ATP. Intraceilular c-AMP thus synthesized

is transported into the extracellular medium where it binds to the receptor and

fusther enhances its own production, while part of it is hydrolyzed by the enzyme

1()hosph0diesterase present on the cell membrane and in the extracellular medium
121, 122).

As important for oscillations as is the positive feedback loop descrbed above, the
factor that limits autocatalysis is equally important. A major role here is played by
desensitization of the c-AMP receptor through reversible phosphorylation (124, 125).
Holding with these observations, a model for c-AMP signaling based on receptor
desensitization (see Fig.13 ) has been proposed by Martiel and Goldbeter (6, 123). In its
simplest version, it describes the time evolution of intracellular and extracellular c-AMP
and of the fraction of active c-AMDP receptor, ATP is treated as a parameter in that
version of the model since the amplitude of ATP variations remains reducedin the
course of c-AMP oscillations. The resulting tiree-variable system is governed by the
following kinetic equations.

“dQ_tu —£,(1)Qr + B2 (¥)1- Q)
L = qob@r.y.e) (1520)
%{-=(Eﬁ§)-kgv @1y
where,
I(y) = -Iﬂl—:_l;—ﬂ,fz(ﬂ = k‘LIITZLZW (22)
HQr.v,0) = —220* ) . Qi (23)

1+ab+eYi(1+a) 1+7

In these equations, $§ and y denote the normalized concentrations of mtracellular and
extracellular c-AMP while pr denotes the fraction of active receptor, o is the
normalized level of ATP and other parameters relate to the kinetic characteristics of the
receptor, adenylate cyclase c-AMP transport, and c¢c-AMP hydrolysis by
phosphodiesterase (see ref 123 for further details).

A recent extension of the model incorporates G proteins which act as intermediates
between c-AMP binding to the receptor and activation {or imhibition) of adenylate
cyclase . The results obtained in that extended model are qualitatively similar to those
obtained in the simpler model governed by Egs.

Oscillations and Relay of c-AMP Signals :The model described by Egs.19-23
‘generally admits a unique steady state solution which can become unstable for
appropriate values of the parameters. In these conditions, the system evolves toward a
stable limit cycle corresponding to sustained oscillations in c-AMP . These oscillations
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(Fig. 14) whose period is of the order of 5-10 min for the parameter vatues collected
from the experiments, are accompanied by a periodic alteration of the receptor between
its active and desensitized states (123) . A similar alternation is observed m the
experiments, since the receptor oscillates between its phosphorylated and
dephosphorylated forms in the course of c-AMP oscillations (122).

a. P
§ 2007 Al T ' T
= ‘ : 5
1 . 0.7
g p
= 1004 a
g 3 a 4
i . -0.5
5
2 2 P
% 1004 f
a ' r-d.!S
3 g
£
< aj [} - ; R - T 9
a 10 2o 3o
Time Imin]

Fig{14 ): Sustained oscillations of c-AMP in the model based om receptor
desepsitization. Shown are the normalized concentrations of intraceilular
{b) and extraceliular c-AMP (y), ATP (), and the fraction of active ¢- AMP
receptor (pr) (From ref 123),

Relay of c-AMP signals in the course of aggregation consists in the pulsatory
amplification of suprathreshold c-AMP pulses. The analysis of the model m the phase
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plane indicates that & close link exists between relay and oscillatory behavior (123). The
former type of phenomenon reflects the excitability of the c-AMP signaling system; for
parameter values close to those producing oscillations, the steady state is indeed stable
but excitable; a suprathreshold increase i extracellular c-AMMP then leads to the
synthesis of a large pulse of c-AMP before the system returns to the stable steady state.

IX- Complex Oscillatory Phenomena in
a Regulated Biochemical System

To analyze the transition from simple to complex oscillatory phenomena, two
complementary ways exist a priori. The first is to try to account for complex oscillations
observed in the experiments. The second is to rely on the analysis of more or less
abstract models whose primary goal is not so much to account for experimental results
but rather to explore the realm of possible modes of complex behavior . To this approach
belong a series of simple biochemical models which were developed to investigate the
occurrence of birhythmicity (coexistence of more than one cyclic attractors) bursting and
chaos in biochemical systems (6) . The interest of these studies is of course not limited to
the biochemical field because the phenomena predicted by these models can occur in
other, nonbiological, chemical systems. Thus birhythmicity was demonstrated in a
chemical system (51) following its theoretical prediction in one of thess biochemical
models (33).

H-1 Birbythmicity:

The vast majority of oscillation in biochemical system corresponds to the evolution
toward a stable limit cycle. Such a limit cycle is generally unique for a given set of
parameter values. A good example of the simple bithythmicity [where two unit cycles are
coexist] is given by Moran and Goldbeter (52). They extended the glycolytic oscillator
model to account for nonlinear recycling of product into substrate, In addition to simple
periodic behavior corresponding to the evolution toward a unique limit cycle the system

.can admit the coexistence - between ‘iwo stable limit cycles more recently Tbrahim and
Flnashaie (53) discovered a complex birhythmicity in the enzyme acetylcholinesterase
system using two compartments model (54) . This complex bistability are summarized as
follows. -

* Two simple periodic attractor (two cycles of counted pericdicity)

* Complex bursting and simple periodic attractor .

* Chaotic and simple periodic attractors.

* Complex bursting and chaotic attractors .

These four categories are summarized and shown in Fig.( 15 ).
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Fig. (15) Complex bistability obtained by means of the two
compartmenta model schematizead by Pig. 11. [ ref. 53]

Actually this complex birhythmicity obtained in the negbourhood of dangerous
boundaries, i.e. homoclinical condition.

Ibrahim and Ajbar found sense few months a very rich bistability when they
developed and analyzed a pseudo-homogenous floc model for oxygen limited
fermentation processes (55). They found a region of parameter values characterized by
three cyclic attractors one of these attractors was chaotic and the second was high
periodic and the last was period ome attractor as shown- elsewhere- by Fig.(10).
However, the phenomena of birhythmicity and trichythmicity between all the attractors
coexisting in phase space (two or three ) indicates dynamical richness and could be
controlled upon appropriate perturbations.

-2 Bursting and Chaos:

Bursting is a term used to describe the behavior of certain neurophysiologycal and
chemical systems in which there is a period of rapid spiking followed by quaescent
(resting) period. It is often in this form of excitable membrane activity that cells in the
biological nervous systems are invoived in various rhythmic behavior, such as central
pattern generations in invertebrates or pacemakers of brain waves in mammalian cortex
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(56, B8).Itis therefor a question of biolegical mterest to ask how a rhythm (of bursting)
can come about (57). The work of Holden and Fan (58-61) on the dynamic behavior of
membrane excitation using a non-phenomenclogical three variables model of action
potential shows clearly the exdstence of different dynamic medes, including simple
periodic, bursting periodic and chaotic behavior. A wealth of transition mechanism
between different types of behavior has been discovered by Holden and Fan (58-61).

One of the interesting observations noticed is that many of the dynamic phenomena
discoversd by Holden and Fan using the three dimensional non-phenomenological action
potential model (Rose-Hindmarsh Model) are also obtained using the present
phenomenoclogical two compartments model with membrane separating the two
compartments (54).

Ibrahim and Elnashaie observed and analyzed the bursting generation in the
acetylcholineserase system via complex bifurcation scenaric. This complex scenario
occurs in the neighborhood of homoclinic orbits, They proved the homoclinicity
condition using the generalized criterion which was developed by Rossler et al. (62) to
extend Silinikov theorem: of homoclinicity to the case of four dimension system [The
two compartments model used by Ibrahim and Einashaie is four dimensional iwodel J.
Ibrahim and Elnashaie om trying to answer the question of how these modes complex
bursting come from . They recognized homoclinical conditions associating these
complex modes of bursting generation (53).

A simple example of this type of oscillatory behavior is obtained from a three variable
model which has been developed by Goldbeter and Decroly (33, 63) . This model is
based on the allosteric model proposed for glycolytic oscillation (1). Here, two
allosteric enzyme are coupled in series, each ofthese enzyme is activated by its reaction
product Fig.(16). The variety of dynamic behavior obtained by this model is much larger
than in the system coroprising a single positive feedback loop . Here, one can observe
the following mode of oscillations :

1) Simple periodic oscillation (limit cycle). 2) Hard excitation (i.e. coexdstence ofa
stable limit cycle with a stabie steady state).3)Chaos , which is reached after a sequence
of period doubling bifurcation . 4) Bursting oscillation. Multiple periodic regions also
can be obtained in this model up to three coexisting stable limit cycles (trirhythmicity)
have thus been found. Similar modes of dynamic behavior have been observed in another
biochemical model containing an autocatalytic step (64),
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To explain the occurrence of such complex dynamic modes, Goldbeter (1) urged that”
Bursting and chaos clearly originate in this multiply regulated biochemical system from
the interplay between two instability-generation mechanisms. Each of the two positive
feedback loops can indeed produce on its own sustained oscillation for appropriate
parameter values, Complex osciatory phenomena result from the interaction of the two
instability mechanisms when thes= hacome active at the same time”.
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An empircal wisthed for fiuding doinains of complex oscillations and chaos in parameter
space has been developed based on this conjecture {33). It consists of identifying two
d1§Unct domains of instability in a given parameter space, each of which is associated
with one of the two destabilizing feedback mechanisms. Then, by changing some other
parameter, the two domains of instability are brought closer to each other until they
overlap. Itis often in the region of overlap that complex oscillatory phenomena oceur in
the form of birhythmicity, bursting or chaos.

Investigation of the Martiel and Goldbeter (123) model of the Dictyostelium cells
oscillation for more complex dynamical modes (i.e. Bursting and Chaos) sre detailed in
reference (6). However, taking into account the variation of ATP, the signaling system is
governed by a set of four kinetic equations. A quasi-steady state hypothesis for
intracellular c-AMP () permits one, however to reduce the number of variables so that
the system is governed by the following set of three kinetic equations (126).

- dQq
dt

d
-{%: v-ob(Qr.y.0)

=-fi(y)Qr +£2,(v)(1-Q7)

EY_ = qk tc¢(QT IY!U') - k Y (23,24,25)
dt hik, +k,) °
Where:
ki +kqy2 k,L; +k;Lyc?y?
fl(T)= ) :f'Z(‘Y)r’ 2 2 (26)
1+y I+c%y
a(AO+ € | 2
B(Qp p,) = — 8P EY) Q1Y gy

T 1+ob+ e Y(l4a) T 1ay?

Besides the inclusion of o as a varable and the quasi-steady state assumption for {3,
what distinguishes Eqs.23-27. is the hypothesis that the nonlinearity required for
oscillations occurs in the activation step between the receptor and the cyclase ratlier than
at the level of c-AMP binding to the receptor. Both kinds of nonlinearity yield similar
types of dynamic behawvior.

The system govemed by Eqs.23-27 presents new modes of oscillatory dynamics, n
addition to simple periodic behavior and relay of suprathreshold c-AMP signals. Thus
bursting and birhythmicity can occur in this system, (126) as well as aperiodic
oscillations (127), the latter again appear through a cascade of period-doubling
bifurcations, both with respect to parameter v and to parameter k, which relate,
respectively, to the input of ATP and to the hydrolysis of extracellular c-AMP by
phosphodiesterase. The domains of birhythmicity and chaos in parameter space are again
much more reduced than those where simple periodic oscillations or bursting are found

(6).
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The prediction of chastic behavior in the model for c-AMP signaling raises the
possibility that automomous chaes may occur m the course of D. Discoideum
aggregation (127), Of particular interest is the observation by Durston (128)thatin
contrast to wild type amoebae which aggregate in a periodic manner om agar after
starvation, aggregation is “‘aperiodic” in the mutant Fr17, whereas the interval between
successive waves remains close to 5 min in the wild type, it varies from 4 to 24 min m
Frl7. Preliminary evidence from experiments in cell suspensions of the mutant HHZ01
derived from Frl7 indicates that the synthesis of c-AMP in that mutant is “erratic”
{129), To test the occurrence of chaos in HH201, cells placed i stirred suspensions
were studied by light scattering s¢ as to monitor the dynamic behavior in 2 continuous
manner (130). Instead of aperiodic behavior , rather regnlar oscillations were recorded,
with a progressive drift in the period from 8 to 6 min, as observed i suspensions of
wild type cells, '

II-3 Strange Chaotic Attractors

Few months ago, I[brahim and Elnashaie investigated the structure and strangeness
of some chaotic and periodic attractors (bursting) which occur in the neighborhood of
homochinical orbits . One of these attractors is small amplitude high frequency chaotic
attractor . This attractor was found to be screw type attractor according to Rossler
notations. This type of attractors are a generic path to homoclinicity (65). Another type
of the strange attractors which was observed by Ibrahim and Elnashaie is the mixed
mode chaotic attractor.
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Fig. (17) Strange chaostic attractor cbserved by Ibrahim and El-
nashaie (53)
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This attractor is a composite state of two type of oscillation : complex periodic
bursting attractor and chaotic attractor. Fig.{17) shows one of the strange ittractors
found by Ibrahim and Elnashate, This attractor appears to be topologically strange from
the following points of views: Microscopic changes in phase space. Interruption of the
spiraling out sequence., The mixed mode attra:tor has many similar characteristics with
the interesting Birkhoff-Shaw attractor (66) whick is produced from the forced Van der
Pol’s equation, specially with regard to the feature of repetitive periodic cycles. In the
case of Ibrahim and Elnashaie attractor, the repeated cycle is mainly bursting oscillation
and in Birkhoff-Shaw attractor, the repeated cycle is the forced cycle. The mixed mode
attractors arc very important from practical point of view where the phenamenon of
irregular action potential may find an explanation.

III- Controlling Chaos

In Biosystems positive as well as negative regulatory feedback provide scurces of
nonimearity which, in conjunction with co~operative processes, give rise to iustabilities
associated with oscillatory behavior (1). Beside periodic behavior , other, more coniplex
oscillations have been identified and increasingly studied in receut years (1). Among
these complex oscillations the most commonly encountered are bursting oscillations and
aperiodic oscillation (chaos). In many practical situations it is interesting to enhance the
appearance of chaos in order to favor process performance such as mixing of fluids or
achieving high rate of heat transfer in some process industries (132) . However, in other
situations chaos may be undesirable, such as mechanical systems where chaos canses
fatigue failure and also temperature oscillations outside safe regions in thermal systems,

In physiological applications, several authors {132 - 133) have discussed the
question of whether chaotic behavior constitutes evidence for pathological behavior of
the system or whether it indicates healthy varability universally found in living
organisms and the whole of nature in general. There has been increasing evidence to
support the case that chaos plays a positive role in the physiolegy of the organism
Goldberger and co-workers (132, 136) stated that chaos is a healthy phenomenon
because it provides the organism with an :**information-rich (broadband) state” and
“spectral reserve”. However one of the fundamental aspects of chaos is that many
different possible behavior are simuitaneously preseat in the system dynamics. A
particular manifestation of this is the fact that there are typically an infinite number of
unstable periodic orbits that co-exist with the chaotic dynamics (137, 138).

The presence of chaos may be a great advantage for control in a variety of
situations. When using small or large controls for nen-chaotic systems, we are usuaily
stuck with whatever system performance already exists. In a chaotic system on the ether
hand, we are free to choose between a large variety of dynamical behavior. The
interested in the investigation of the problem of chaos using feedback control methods
has started recently (139-141). These methods needs the kmowledge of the return map
of the system and works by perturbing the system state in such z way that it leads to the
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desired fixed state. Beside the feedback methods. Thers is a possibility to stabilize
periodic orbits by nonfeedback methods (142, 143) . This interesting technique presents
the advantage of being much easier to implement. It is comsists of the application of
resonant periodic parametric perturbations, that effectively stabilize some wmstable
periodic orbits of the system . The effects associated with these perturbations are
generally difficult to predict nevertheless it is easy to implement . From another point of
view this technique is a2 common way - naturally occurring way- to regulate some
physiological processes of great interest i liviug organisms. For example the secretion
of hormones (like acetylecholine) is a periodic process {116).

To investigate the effects of small periodic perturbation on chaotic behavmr Liet
al. (144), tested the dynamic behavior of Dictryostelium cells comprising variable
proportions of cells from two pepulations, one chaotic and the other periodic. For each
population cells synthesize and secrete c-AMP aceording to Eqs 23-27 with ome
equation for the fraction of active c-AMDP receptor (pr) and one for the substrate ATP
(c), but the kinetic equation for extracellular c-AMP (y) takes into account the
production of ¢-AMP by the two populations present within the mixed suspension, as
well as the degradation of c-AMP by phosphodiesterase produced by the two types of
cells.

Starting with a homogeneous population of periodic cells (F; = 1) and increasing
progressively the proportion F; of (initially) chaotic cells, a sequence of period-doubling
bifurcations leading to chaos is found (145) as a function of F,. The physiologically most
siguificant result, however , is that the presence of a tiny proportion of periodic cells,
e.g. of the order of a few %, suffices to suppress the chaotic behavior of the large
majority of cells present in the suspension (144, 145). Thus, Fig. (18) indicates that the
presence of 5% periodic cells suffices to transform the (initially) chaotic behavior of
95% of'the cells into complex periodic oscillations. A detailed bifurcation analysis of the
mixed system shows (6} that such a sensitivity of chaos can be related to the relative
smallness of the chaotic domain as compared to the domain of periodic behavior in
parameter space. Mixing the chaotic and periodic cell populations amounts to shifting
the effective value of control parameter in a homogeneous population out of the range
of chnos imto the range of values corresponding to simple or complex permdm
oscillations (6).

To further check the effect of mixing 8 small proportion ofperiodic cells with
chaotic ones, a population of chaotic amoebae was subjected to a small-amplitude
periodic forcing (6, 145). This was done in the model by adding a sinusoidal input term
to the kinetic equation fory i Eq. 25 Confirming the results of the mixing of periodic
and chaotic cells, simulations indicate (Fig. 18 ) that a tiny periodic permrbatlon of the
strange attractor is sufficient to transform chaotic inte periodic behavier.

Controlling chaos by small perturbation has also been studied by Ibrahim (131}
using the two compartments model described before. Ibrahim examined two types of
perturbing ﬂmctxons sinusoidal und square function, This investigation has shown that
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Fig. {(18) Suppression of chacs by a small amplitude periodic
forcing in the model for c~AMP signaling [ ref. 144]

regular motion (periodic) could be obtained using small perturbation regardless of
the shape of perturbed regular function. In the case of excitation with fixed frequency,
full entrainment occurs at certain forcing amplitude as shown by Fig. (19). Full

| TESCE, Vol 26, No.2 147- | Tuly 2000




entramment of the system requires less amplitude in the case of square forcing than m
the case of sinusoidal forcing. Ibrahim (131) has also shown that a regular regions
interrupted by strips of chaos can emerge from the original unperturbed system in the
case of excitation using fixed amplitude (changing frequency). Wider periodic windows
[wider regular regions] was observed with increasing the forcing frequency.
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Fig. [19) Effects of two differant foroing functions on a chactia
behavioxr obtained by the two compartments model [ref. 131]
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Concluding Remarks

The study of biochemical oscillations has undergone great advances in the last decade
An overview of the imporant examples of biochewical cscillators arc given : PO
reaction- Glycolytic reaction, - Intracetiular Ca++ Oscillations - Mitotic Oscillator
Acetyecholinesterase reactions - Some fermentation processes and the oscillations in
Dictyostelium cells. The regular and iregular thythms were briefly prescutad together
with some dynamic models proposed for qualitative study of these systems.
The experimental studies of PO reaction ( The first example of chaos in biochemical
systems ) lag , by far, the theoretical work (6) and computational studics. Some of the
remaining questions imvolving this reaction focus on the details of the mechanism
involved with the generation of regular and chaotic oscillations. Recent theoretical
studies of possible detailed mechanisms bring us closer 1o auswering these questions (36)
However , these answers can be oonly conjectures without further experimental work.
Other unsolved problems invoive the role of the critical additives methylene blue and
dicitlorophenol. At dynamical level the origin of the oscillations and the route to chaos
have only begun to be studied. Further extensive investigation of this system is necessary
to approach the maximum possible understanding of the nonlinear dynzmics of the PO
system . Oscillations of the most industrial important microorganisms are also reviewed @
S. cerviciae and Z. mobilis, one of the important cbservation is that, the operation of the
bioreactor under chaotic motion gives higher average substrate conversion, higher
product yield and higher production rates than for steady state conditions with the same
bifurcation parameter (1I2) . Further understanding of this system (Z. mobilis ) needs
exteasive work in the level of modeling and experimental works: the direction of
modeling development may be directed to more conceptual and little empiricat models.
Experiments should be devoted to the operation of the fermenter at chaotic state to
examine the theoretical prediction of Elnashaie et al. (112) of higher yield and higher
conversion rates associated with.the chaatic state,
With respect to S. cerviciae, the models based on age distribution balance (105) still fax
from complete representation of this important yeast culture oscillations . Actually these
type of models do not permit mass transfer limitations to be treated separately within the
model context. This is in contradiction with the fact that mass transfer may play a
- rémarkable role in such. systems ( 114) specially o, transfer limitations .

On the other hand the simple unstructured model given by Ibrahim and Ajbar (114)
confirmed well with the experimentally observed dissolved oxygen oscillaticns of such a
system. This model needed to extend to a macroscopic scale ( bioreactor) rather than the
floc scale.

The experimental autonomous oscillations of pH in the acetlylcholinesterase-
acetylcholine system(17), received Lttle attention despite of its importance as a main
neurotransmitter. The earlier work of Elnashaie et al (  120a,b,c) proved that this
system is very rich in static bifurcation phenomena {multiplicity of steady states: more
than 25 steady state were discovered - Patterns formation). The recent work of Ibrahim
and Elnashaie proved that this system could be used as and important example for
different type of simple and complex modes of oscillations and strange periodic and
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chaotic behavior. An ex.ensive attention should be paid to prove experimentally that
dynamical richness of the system.

The function of glycolytic oscillations remains unclear, although it has been suggested
that they may enhance the thermodynamic efficiency of glycolysis (146), or the
ATP/ADP ratio (68) in the ATP- producing pathway . These oscillations could well be
merely an accidental consequence of peculiar regulation of phosphofructokinase ;a
similar view mzy also hold for the oscillatory peroxidase reaction. Even so, the virtue of
this systems would be to provide highly usefill models for biochemical oscillations that
can be studied in vitro . _

The existence of an .optimal pattem of pulsatile stimulation by c-AMP signals in
dictyostelium can be related o the optimal frequency observed in the action of a number
of hormones (147-149) whose secretion also follows a pulsatile pattern. It is noteworthy
that in the model based on receptor desensitization v :ich applies both to c-AMP and
hormoral signaling , the optimal periodic signal proves iiore effective than random or
chaotic pulstile stimuli{150),

The physiological function of biochemical oscillations hus been clarified to various
degrees . The clearest and most important case is that of the cell division cycle which
plays a major role in development. Moreover, perturbations of the continuous
biochemical oscillator coutrolling mitosis may lead to cell cycle arrest or may conversely
be involved in abnormal cell proliferation. As to Ca®" oscillations, their effects only begin
to be investigated; most of the work so far has indeed been devoted to the
characlerization of the oscillatory phenomenon. It appears that Ca** oscillations could be
encoded in terms of their frequency(18-22,73,80) ; the latter indeed rises with the level
of stimufation by horp:ones or neurotransmitters. Oscillations in cytosolic Ca*" are ofien
accompanied by Ca® waves propagating within the cell from the site of stimilation(74-
77), these waves could serve in mtracellular signaling as well as in propagating signals
from cell to cell.

At the cellular level, the “aperiodic signaling” propesties cbserved (128)during
aggregation on agar in the Dictyostelium mutant Fr 17 could provide an example of
autonomous, biochemical chaos. Attempts at characterizing in terms of chaos the
behavior of this mutant in cell suspensions have failed, however, since rather regular
oscillations instead of aperiodic behavior were observed(130). Because this result could
well be due to the suppression of chaos by the strong coupling with some periodic cells
in the mixed suspension(145,146), further studies of the chaotic mutant of Dictyostelm
should best be carried out during aggregation on agar, as originaily considered by
Durston(128) . Any center bebaving in a chaotic manner would then be capable of
expressing its aperiodic nature in the absence of the strong coupling that takes place in
cell suspensions.

The analysis of models for biochemical oscillations throws light on the molecular
mechanisms of periodic behavior and clarifies the conditions im which simple periodic
oscillations give way to more complex oscillatory phenomena, inchuding chaos . With
regard to periodic behnvior, although end product inhibition can in principle give rise to
limit cycle oscillations(151,152), the most prevalent type of regulation involved in
generating the phenomenon is positive feedback(12). Such is the case of the
phosphofuctokinase reaction and for ¢~ AMP signaling in Dictyostelium. The regulatory
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mechanisms whizh underlie Ca®™ oscillations also appear to include posithe feedback in
the form of Ca®* -induced Ca®™ release. As to the mitotic oscillator, some models are
agam based on positive feedback, via the { not yet fully characterized Y wtocatalytic
regulation of cdc2 kinase(90-92), but other models(6,93) show that oscillation may result
solely from the delayed negative feedback present in the interactions between cyclin and
cdc2 kinase. Required in all these oscillatory mechamistos is a minimum degree of
nonlinearity.

' A recurrent finding in all models mvestigated for complex oscillations is that
however complex the regulatory structure of the biochemical systeru mav be, simple
periodic oscillations by far remain the most common mode of dynamic behavior,
followed by complex periodic osciliations in the form of bursting. The occurrence of
multiple stable limit cycles and chaos is restricted to much smaller domairs in parameter
space. This may explain the fact that for most oscillations observed i bivlogical systems,
at least in autonomous conditions periodic behavior prevails over chaos.
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