55-*66*

ION ACTIVITIES OF SOME TRACE METALS IN AQUATIC ENVIRONMENTS

A. T. Kandil^a, T. A. Tawfic^b, A. A. Mahmoud^c

ABSTRACT

In Egypt, Rosetta branch, one of the two main branches of the Nile River, is impacted by several agricultural drains and industrial companies at Kafr El-Zayat City which potentially affect and deteriorate its quality of water. In this study water and sediment samples were collected from twelve different locations in Kafr-El Zyat area. Analytical values including temperature, pH, total concentrations of trace metals, major anions and cations were inserted into the *Visual MINTEQ* geochemical speciation model to calculate various ionic activities of (Mn, Fe, Cu and Al). The results show that the studied metal in the collected samples are controlled by different solid phases. Mn activity is controlled by $MnCO_3(s)$, Cu is controlled by CuO(s) while Fe is controlled by $Fe(OH)_3$ and Al is controlled by Al(OH)_3 amorphous and gibssite. The study reveals that, identifying ionic activities is of particular importance as pollutants affect the water environment by the chemical behavior of the ionic species than by total concentrations. Finally the adverse effects of highly soluble metals are important in water chemistry because their inherent toxicities are related to the bioavailability.

Introduction:

The aquatic chemistry of trace metals in the natural environment depend upon the distribution dynamics of these metals and on the type of interaction between the metal and their aquatic habitat. The effect of pollutants on organisms in the aquatic environment is determined by the positional and bio availability of pollutants. The bio available fraction refers to that portion of the total amount of a pollutant present in a system which is potentially available for uptake by the organisms and positional availability Grobler, D. C. and Davies, E.1979.

Gun et al, 1988 stated that the trace metals are considered as contaminations of terrestrial and aquatic systems because of their persistence and toxicity at low concentrations. There is considerable evidence that the physicochemical form in

a, Prof. of nuclear and inorganic chemistry Faculty of science, Helwan University , Egypt.

b, Prof. of Environmental chemistry, National Water Research Center, Egypt

c. Chemist . National Water Research Center .Egvot.

which they are present in waters, sediments and in soils markedly influences the bioavailability and toxicity of such metals. El-Sanafawy (1997) stated that, Elements, both metallic and non metallic, may occur in one of several oxidation states and in soluble complexes with different organic and inorganic ligands.

Determination of collective parameters and total elemental composition is inadequate for identifying the mechanisms that control the composition of natural waters and indeed the soil solution. The chemical behavior of the elements in natural systems depends on their chemical speciation. The aim of this study is to estimate the total concentrations of anions and cations and the ion activities by using speciation model for both water and sediment samples in Kafr El-Zyat city.

Materials and Methods

Selected Sites

Water and sediment samples were collected in December 2005 from fifteen different sites at Kafr-El Zyate City. These selected sites are shown in the map (Fig1).

Figure (1): Map of the studied area

Sampling

Water samples were collected in one liter polyethylene container using auto samplers. Containers were rinsed using tap water, distilled water and finally by the site water before sample collection.

Samples were preserved following the procedures outlined by the American Public Health Association "APHA" (1992), and transported to the laboratory in ice boxes. At each corresponding water sampling site, sediment samples were also collected using hand corer. Samples were stored in polyethylene bags *and* then transported to the laboratory in ice tanks within few hours from the collection.

Sample Analysis

Water Analysis

Field Analysis

Temperature, dissolved oxygen (DO), pH, and electrical conductivity (EC) were determined in-situ using a multi-probe system, model Hydro lab-Surveyor.

Laboratory Analysis

Total alkalinity values reported determined by electrometric titration of a sample aliquot using a standard solution of (0.02N H₂SO₄). The inflection points determined by pH-meter were in micro equivalents per liter. Trace metals and major cations were analyzed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) with ultrasonic nebulizer (USN), Perkin Elmer Optima 3000, USA in clear filtrates obtained by 0.45 μ m -pore-diameter filter paper. Major anions concentrations were determined using Ion Chromatography (IC), model DX-600 chromatography system.

Sediment Analysis

Collected sediment samples were air dried for 24 hours then crashed, extracted with water at a sediment : water ratio of 1: 2 and shaken for 1 day in a shaker model Rumo 3015. Suspensions were filtered using 0.45 μ m-pore-diameter filter papers for analysis as indicated in water samples.

Visual MINTEQ Model

Analytical values including temperature, pH, and total concentration of trace metals, major anions and cations were inserted in the *Visual MINTEQ* geochemical speciation model, US EPA to calculate various ionic activities. The ionic strength (I) was not fixed and left to be calculated by the iterative program. Temperature was set at 25^oC for sediment samples. Ionic Activities of Al⁺³, Cu⁺², Mn²⁺ and Fe³⁺ as well as their important ionic complexes were obtained from the *Visual MINTEQ* output files. Total concentrations and ion activities of these metals were plotted on the solubility diagrams similar to those developed by Lindsay 1979, Tawfic 1990, Tawfic &Lindsay 1995.

Results and Discussion

1. Physicochemical parameters

1.1. pH

The results of the pH value of surface water samples ranged (7.5-7.84) which means that all water samples are alkaline and the values of sediment extracts for the same samples are ranged from (7.1-7.9). Sediment pH is affected by the changes in redox potential that occur in sediments that become waterlogged periodically. Reducing conditions generally cause a pH increase and oxidation brings about a decrease (Alloway, 1990).

1.2. Electrical Conductivity

The results show that, the electrical conductivity (EC) for water and sediment extracts ranged (503 - 1520 μ S/cm) and (625- 5050 μ S/cm) respectively. EC values for sediments are higher than that for water samples for all locations .Which due to higher concentrations of cations and anions in sediment extracts than in water samples. Results are shown in appendix 1.

2. Chemical parameters

2.1. Major anions

In all the studied sampling locations, the fluoride concentration is ranged between (0.203 - 0.575 mg/l) in water samples, and between (0.001 - 0.594 mg/l) in sediment extracts. Chloride concentrations in water samples ranged between (35.8 - 0.575 mg/l)

178.7 mg/l), and between (13.2-1005.4 mg/l) for sediment extracts. Nitrate concentrations ranged from (1.19 - 31.8 mg/l) in water samples, and between (0 - 332.4 mg/l) in sediment extracts. Concentration of sulfate in water samples is ranged between (41.7 - 252.3 mg/l), and between (146.4 - 8204.2 mg/l) in sediment extracts. Complete results are shown in appendix 1.

2.2. Major cations

Sodium concentrations ranged between (40 - 190 mg/l) in water samples, and between (65 - 640 mg/l) in sediment extracts. Calcium concentrations ranged between (36.3-132 mg/l) in water samples, and (75.9 - 1280 mg/l) in sediment extracts. Magnesium concentrations ranged between (15 - 45.5 mg/l) in water samples and between (29 - 472 mg/l) in sediment extracts. Potassium concentrations ranged between (9.1- 13.1 mg/l), in water samples and between (15 - 52.2 mg/l) in sediment extracts. The results of major cations revealed that the water samples were lower in concentration than sediment extracts for all locations.

3.3. Trace metals ion activities

3.3.1. Iron

As it is shown from the appendix 2 the concentration of iron range between (0.017-0.414 mg/l) in water samples and between (0.012 - 0.618 mg/l) in sediment extract samples.

Total concentrations and calculated activities of iron were plotted on Figure (2), for iron The line drawn is $Fe(OH)_3$ (*amorphous*) using the following equations

Fe (OH)₃ (amorphous) $+3H^+ \longrightarrow$ Fe⁺³ $+3H_2O$ logK⁰= 3.54 Log (Fe)⁺³= 3.54-3pH

By plotting these data, it was shown that iron ion activities estimated by the model and the logarithmic values of iron total concentrations all fall above $Fe(OH)_3$ (amorphous) line which suggests that all samples are supersaturated with respect to all iron species lines including this line. Lindsay 1979

Figure (2): Total conc. and activity of Fe³⁺ calculated from Visual MINTEQ showing data points of Fe³⁺ are supersaturated with respect to Fe (OH) 3 (amorphous) lines

3.3.2. Manganese

From data in appendix 2 it shows that the total concentration of manganese in water range between (0.01 - 0.309 mg/l), and for sediment samples the total concentration of manganese range between (0.148 - 18.50 mg/l), this means that the total concentration of manganese in sediment samples is much greater than in water sample.

Total concentration of manganese were plotted on Figure (3) drawn by Lindsay 1979, using equations

$MnCO_3 + 2H^+$	$\stackrel{\checkmark}{\longrightarrow} Mn^{+2} + CO_2 + H_2O$	$\log K^0 = 8.08$
At log CO ₂ =-2.5	$\log (Mn^{+2}) = 10.58-2pH$	
At $\log CO_2 = -1.5$	$\log (Mn^{+2}) = 9.58-2pH$	
At log CO2 =-0.57	$\log (Mn^{+2}) = 8.08-2pH$	

By plotting these data, it is shown that manganese ion activities estimated by the model are all around MnCO₃ line which suggests that MnCO₃ is most probably the

solid phase that control manganese activities. The data also indicates that (Mn) decreases with the increase in CO_2 (g) partial pressure.

Figure (3): Total conc. and activity of Mn^{2+} calculated from Visual MINTEQ showing data points of Mn^{2+} fall between MnCO₃ lines

3.3.3 Copper:

From data in appendix 2 it shows that the total copper concentrations in water samples ranged between (0.002 - 0.011 mg/l), and in sediment between (0.006 - 0.087 mg/l)

The total concentration and activity of Cu^{+2} which calculated from Visual MINTEQ were plotted on Figure (4) drawn by Lindsay 1979 according to the following equilibrium reaction:-

CuO(tenorite) +2H⁺ \swarrow Cu⁺²+H₂O $\log K^0 = 7.66$

Log (Cu⁺²) =7.66-2pH

By plotting these data, it is shown that copper ion activities estimated by the model are all around CuO (tenorite) line which suggests that tenorite is the solid phase controls copper activities.

Figure (4): Total conc. and activity of Cu⁺²calculated from Visual MINTEQ showing data points of Cu⁺² fall around tenorite line.

3.3.4 Aluminum

From the results in appendix 2 it shows that the total concentrations of aluminum in water samples ranged between, (0.011 - 0.54 mg/l) and between (0.042 - 0.959 mg/l) for sediment extract.

The total concentration of aluminum are plotted on Figure (5) which was drawn by Lindsay, 1979, using equations

Al (OH)₃ (amorphous) +3H $Log (Al^{+3}) = 9.66-3pH$ γ -Al(OH)₃(Gibbsite) +3H⁺ $Log (Al^{+3}) = 8.04 - 3pH$ Al⁺³+3H₂O log K⁰= 8.04

TESCE, Vol. 34, No. 1

By plotting these data in Figure (5), it is shown that aluminum ion activities are all between γ -Al(OH)₃(Gibbsite) line and Al(OH)₃ (amorphous) line which show that gibbsite may be the solid phase that control aluminum activities.

Figure (5): Total conc. and ion activity of Al⁺³ calculated from Visual MINTEQ Showing that all data points lay between Al (OH) 3 (amorphous) and (Gibbsite) line

Conclusion:

It is now becoming evidence that metal speciation into different fractions is the most reliable criterion for quantifying the potential effect of contamination of sediments by trace metals. The data indicated that the bioavailability of trace metals in aquatic system is best explained by activities rather than concentrations. The results also show that the metal speciation give an insight to the behavior of the chemical forms that is present in solution.

Visual MINTEQ model suggest that iron activity is supersaturated with respect to $Fe(OH)_3$ (amorphous), MnCO₃ may be the solid phase that control manganese activity, Copper activity is controlled by Tenorite CuO(s), while Al is controlled by Gibbsite γ -Al(OH)₃ and Al(OH)₃ (amorphous).

References:

Alloway, B.J., "Heavy Metals in Soils", John Wiley & Sons Inc., New York(1990).

American Public Health Association (APHA) "Standard methods of the examination of water and wastewater".18th Ed. Washington D.C., (1992).

El Sanafawy, Hamida, "Geochemical studies on soils, water and bottom sediments of some polluted drains in Kafr El-Sheikh governorate- Egypt"., Master thesis, Alexandria university (1997).

Grobler, D. C., and Davies, E., : Water SA, 5, 114-122, (1979).

Gunn, A.M.; Win nard, D.A.; Hunt, D.T.E.,' Trace metal speciation in sediments and soils: An overview from a water industry perspective:., Metal Speciation: Theory Analysis and Application. Lewis Publishers. Chelsea Michiqan .p.261-294. 16fig 5tab. 40ref, (1988).

Elsokkary I.H., "Trace metals in sediments and waters: case study from Egypt", from "Impact of Heavy Metals on the Environment", by J.P. Vernet, pp.355-377 (1992).

Lindsay, W.L. "Chemical Equilibria in soils". Wiley-Interscience, New York (1979).

Singer, P.C. "Trace metals and metal organic interaction in natural water", Ann Arbor, Mich. Ann Arbor Science Publishers, 229, (1973).

Tawfic, T.A. and W.L. Lindsay. Ion activities of Cu^{2+} and Pb^{2+} in soils using competitive chelation and computer speciation. Soil Chemistry Division. Agronomy Abstracts. Madison, Wisconsin. p.239. (1990).

Tawfic, T.A. and W.L. Lindsay. Estimating Cu^{2+} and Pb^{2+} activities in soils. Contaminated Soils: Third International Conference on the Biogeochemistry of Trace Elements Proceedings. Accepted. Paris, France, (1995).

Sample Code	Sample Description	рH	EC (µS/cm)	к.	Mg ²⁺	Ca ⁺¹	Na*	SO, ¹	۲04 ^۲	NO,	CI.	F
RI (Rosetta beforeTala Drain)	Water Sample	7.71	504	10.9	16.7	39.7	40.8	41.721	<0.2	2.078	37.26	0.273
	Sediment extract	7.65	3610	41.3	195	691	471	2157.88	<0.2	1.42B	60.2	0.148
R2 (Tale mix Rosetta)	Water Sample	7.72	1510	12	44.5	82.8	189	250.085	<0.2	31.34	177.397	0.291
	Sediment extract	7.54	4850	38.7	408	1110	378	8204.262	<0.2	8.78	394.77	0.16
R3 (Rosetta after Taia Drain)	Water Sample	7.64	1520	13.1	45.5	85.4	190	252.346	<0.2	31.864	178.686	0.381
	Sediment extract	7.8	4540	30	310	520	210	3320	<0.2	4.2	210	0.59
P4 (F)-mosstabat)	Water Sample	7.79	522	10.4	15.5	37.2	50.5	45.301	<0.2	1.577	39.014	0.295
K4 (Ci-iliusataliat)	Sediment extract	7.72	2100	27.)	92.2	476	65	1113.88	<0.2	2.75	17.49	0.176
R5 (Sait & Soda	Water Sample	7.5	655	10,1	16.B	42.8	69	44,462	<0.2	2.833	95.714	0.279
Co.eMuents)	Sediment extract	7.91	4370	40,5	283	1110	192	30609,7	<0,2	<0.2	62.95	0.5
P6 (FLMalia Co.)	Water Sample	7.56	651	10.6	17	42.9	67.8	44,379	<0.2	2.518	97.153	0.355
KU (CI-WARNA CO.)	Sediment extract	7.95	3400	40.5	175	884	128	2683.23	<0.2	5.212	38.7	0,583
R7(Rosetta at	Water Sample	7.84	525	10	16.1	18	50	44,283	<0.1	1.712	42.132	0.203
Benofer)	Sediment extract	7.89	3980	44.3	240	1070	ស	2839.85	<0.2	0.504	37.45	0,005
RB(Roseita at Ebig)	Water Sample	7.74	\$17	10.8	16.2	37.7	49	43.854	<0.2	1.255	37.667	0.305
	Sediment extract	7.97	1970	47.2	262	1070	145	3321.38	<0.2	<0.2	29.15	0.132
R9 (Rosetta at	Water Sample	7.71	516	10.6	15.8	36.3	49	43.751	<0.2	1.199	41.202	0.372
Farastek)	Sediment extract	7.68	4970	25.5	288	8 60	507	4120	<0.2	E.4	40.2	0,11
R10 (Rosetta at	Water Sample	7.68	533	9.93	15.8	38.7	51,6	43,428	<0.2	1.602	31.096	0.575
Mahalet abo all)	Sediment extract	7.88	2670	29.2	165	792	88.2	2380,767	<0.2	6,094	16.349	0.224
R11(Rosetta at	Water Sample	7.64	522	9.1	15.1	37.7	50	44.263	<0.2	1.477	37.453	0.396
Desouk)	Sediment extract	7.51	2910	34.3	164	638	137	2225.59	⊲0.2	6,503	25.681	0.29
R12 (Rosetta at	Water Sample	7.67	503	9.83	15	36.5	49.2	42.91	<0.2	1. 393	35.823	0.376
Fews)	Sediment extract	7.92	625	15	29	75.9	93.5	192,653	<0.2	332.47	31,156	0.54

Appendix 1, Results of physical and chemical analysis of water and sediment extract samples

.

-65-

January 2008

		17.1	LogiFel	Log(Fe")	Mai meld	Log[Mn]	Log(Ma ^{*2})
Sample Code	Sample Description	[s.e! mki	l	17101/1	listal ment	πιοί/Ι	moVi
R1 (Rosetta	Water Sample	<0.01		<u> </u>	0.01	-0,/39	
beforeTala Drain)	Sediment extract	0.421	-5,122	-14,579	0.148	-5.36	-1,610
R2 (Tala mix	Water Sample	<0.01					-
Rosetta)	Sediment extract	0.206	-54,331	-14,923	0.173	-5,502	-2,882
R3(Rosetta after	Water Sample	<0.01			-		
Tala Drain)	Sediment extract	0.452	-5,091	-14,465	0.26	-5,342	-5,701
RA (Elementations)	Water Sample	<0.01		-	0.1	-5.739	-5,013
	Sediment extract	0.4	-5,144	-14,853	0.771	-4,852	-5,362
R5 (Salt & Soda	Water Sample	0.272	-5,312	-15,533	0.309	-5,249	-5,491
Co.)	Sediment extract	0.618	-4,955	-14,124	15.1	-3,561	-4,228
R6 (F1-Maila Co.)	Water Sample	0.024	-6,366	-16,667	D.284	-5,286	-5,529
No (Er frank Cor)	Sediment extract	0.498	-5,049	-14,286	8.53	-3,808	-4,438
R7 (Rosetta at	Water Sample	0.017	-6,516	-16,866		-	
Benofer)	Sediment extract	0.191	-5,465	-15,261	10.4	-3,723	4,343
R8 (Rosetts at	Water Sample	0.017	-6,516	-16,866	0.028	-6,293	-6,558
Eblg)	Sediment extract	0.543	-5,011	-14,651	11	-3,698	-4,337
R9 (Rosetta at	Water Sample	<0.01			0.092	-5,776	-5,015
Farastek)	Sediment extract	0,113	-5,693	-15,238	1.09	-4,702	-5,372
R10 (Rosetta at	Water Sample	<0.01		-	0.165	-5,522	-5.79
Mahalet abo all)	Sediment extract	0.179	-5,493	-14,959	3,42	-4,206	-4,777
R11 (Rosetta at	Water Sample	<0.01	~	-	0.17	-5,509	-5,754
Desouk)	Sediment extract	0,012	-6.66	-16,036	18.5	-3,472	-4,055
R12 (Rosetta at	Water Sample	<0.01		<u> </u>	-	-	
Fewa)	Sediment extract	<0.01	~	-	0.264	-5,348	-5,602
~~ <u></u>							
Sample Code	Sample Description	(Cu) mg(/)	Log(Cu) mol/:	Log(Cu'²) mpM	(Al) mg/l	Log [Al] mtVi	Log(Al*3) mol/l
Sample Code R1 (Rosetta	Sample Description Water Sample	(Cu) mg)/) 0.309	Log(Cu) mol/: -6,849	Lag(Cu ⁺²) m2/J -8.48	(Al) mg/I 0.027	Log [A]] mol/1 -5,599	Log(Al*3) mol/1 -13,712
Sample Code R1 (Rosetta beforeTala Drain)	Sample Description Water Sample Sediment extract	(Cu) mgl/) 0.309 0.074	Log.(Cu) mol/: -6,849 -5934	Lag(Cu ^{*2}) m2/l -8,48 -7,448	(Al) mg/J 0.027 0.244	Log [A]] mal/1 -5,999 -50,436	Log(Al*3) mol/1 -13,712 -11,678
Sample Cotie R1 (Rosetta beforeTala Drain) R2 (Tala mix	Sample Description Water Sample Sediment extract Water Sample)Cu) mg()) 0.009 0.074	Log(Cu) mol/: -6,849 -5934	Lag(Cu ^{*2}) m2/1 -8.48 -7,448	{Al} mg/l 0.027 0.244 0.051	Log [A] mula -5,599 -50,436 -5,723	Log(Al ^{*3}) mol/l -13,712 -11,678 -13,023
Sample Code R1 (Rosetta beforeTala Drain) R2 (Tala mix Rosetta)	Sample Description Water Sample Sediment extract Water Sample Sediment extract	{Cu} mgJ/) 0.009 0.074 	Log(Cu) mol/: -6,849 -5934 - -	Lag(Cu ^{*2}) m2/1 -8.48 -7.448 	{Al} mg/l 0.027 0.244 0.051 0.123	Log [A1] mol/1 -5,599 -50,436 -5,723 -5,341	Log(Al ⁻³) mol/1 -13,712 -11,678 -13,023 -12,001
Sample Code R1 (Rosetta beforeTala Drain) R2 (Tala mix Rosetta) R3(Rosetta after	Sample Description Water Sample Sediment extract Water Sample Sediment extract Water Sample)Cu) mgU) 0.309 0.374 	Log[Cu] mol/: -6,849 -5934 - -6,131	Lag(Cu ²) maN -8.48 -7.448 	[A]} mg/l 0.027 0.244 0.051 0.123 0.042	Log [A1] mol/1 -5,599 -50,436 -5,723 -5,341 -5,808	Log(Al*3) mol/1 -13,712 -11,678 -13,023 -12,001 -14.12
Sample Cotie R1 (Rosetta beforeTala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain)	Sample Description Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract	Cu] mg /) 0.309 0.074 	Log[Cu] mol/: -6,849 -5934 - -6,131 - - -5,874	Lag(Cu ²) m2N -8.48 -7,448 -7,634 -7,528	{Al} mg/l 0.027 0.244 0.051 0.123 0.042 0.109	Log [A1] mol/1 -5,999 -50,436 -5,723 -5,741 -5,808 -5,393	Log(Al ⁻²) :nol/1 -13,712 -11,678 -13,023 -12,001 -14,12 -11,945
Sample Cotie R1 (Rosetta beforeTala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(FL mosetabet)	Sample Description Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample	Cu) mg /) 0.009 0.074 	Log[Cu] mol/: -6,849 -5934 - -6,131 - - -5,874 -6,762	Lag(Cu ²) m2N -8.48 -7,448 -7,834 -7,528 -8.49	{Al} mg/l 0.027 0.244 0.051 0.123 0.042 0.109 0.011	Log [A1] mol/1 -5,999 -50,436 -5,723 -5,741 -5,808 -5,393 -6,389	Log(Al ⁻²) mol/1 -13,712 -11,678 -13,023 -12,001 -14,12 -14,12 -14,945 -14,365
Sample Cotie R1 (Rosetta beforeTala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosstahat)	Sample Description Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract	Cu mgl/) 0.009 0.074 	Log[Cu] mol/: -6,849 -5934 - -6,131 - - -5,874 -6,762 -5,984	Log(Cu ^{*2}) m2/1 -8.48 -7,448 -7,834 -7,528 -8.49 -7,634	[A]] mg/l 0.027 0.244 0.051 0.123 0.042 0.109 0.011 0.042	Log [A1] mol/1 -5,599 -50,436 -5,723 -5,723 -5,724 -5,808 -5,393 -6,389 -5,808	Log(Al ^{*3}) TIOLI -13,712 -11,678 -13,023 -12,001 -14,12 -14,12 -14,155 -13,092
Sample Cotle R1 (Rosetta beforeTala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosstahat) R5 (Salt & Soda	Sample Description Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample	Cu] mgl/) 0.309 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - -5,874 -6,762 -5,984 -6,958	Log(Cu ²) m2/l -8.48 -7.446 -7.634 -7.528 -8.49 -7.634 -8.78	[A]} mg/l 0.027 0.244 0.051 0.123 0.042 0.009 0.011 0.042 0.054	Log [A1] mul/i -5,599 -50,436 -5,723 -5,341 -5,808 -5,391 -6,389 -5,808 -5,808	Log(Al ⁺³) ::::::::::::::::::::::::::::::::::::
Sample Code R1 (Rosetta beforeTala Drain) R2 (Tala mix Rosetta) R3(Rosetta alter Tala Drain) R4(El-mosstahat) R5 (Salt & Soda Co.effuents)	Sample Description Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract	Cu] mgl/) 0.009 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - - 5,874 -6,762 -5,984 -6,958 -5,864	Lag(Cu ³²) m2M -8.48 -7.448 -7.634 -7.528 -8.49 -7.634 -8.78 -7.221	[A]} mg/l 0.027 0.244 0.051 0.123 0.042 0.109 0.011 0.042 0.054 0.068	Log [A1] mol/1 -5,599 -50,436 -5,723 -5,729 -5,720 -5,729	Log(Al ⁻³) ::::::::::::::::::::::::::::::::::::
Sample Cotie R1 (Rosetta before Tala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosatahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.)	Sample Description Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample	Cu) mg1// 0.009 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - - -5,874 -6,762 -5,984 -6,958 -5,864 -	Lag(Cu ²) m2N -8.48 -7.448 -7.634 -7.528 -8.49 -7.634 -8.78 -7.121 	[A]] mg/l 0.027 0.244 0.051 0.123 0.042 0.109 0.011 0.042 0.054 0.054 0.068 0.045	Log [A1] mol/1 -5,999 -50,436 -5,723 -5,723 -5,723 -5,723 -5,723 -5,723 -6,389 -5,508 -5,699 -5,599 -5,599 -5,778	Log(Al ⁻³) 710U1 -13,712 -11,678 -13,023 -12,001 -14,12 -14,12 -14,165 -13,092 -14,452 -12,034 -13,279
Sample Cotie R1 (Rosetta beforeTala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosatahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.)	Sample Description Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract	Cu) mg1/) 0.009 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - - -5,874 -6,762 -5,984 -6,958 -5,984 -5,864 - -	Lag(Cu ²) m2/l -8.48 -7,448 -7,634 -7,528 -8.49 -7,634 -8.78 -7,634 -8.78 -7,221 -7,261	[A]] mg/l 0.027 0.244 0.051 0.123 0.042 0.109 0.011 0.042 0.054 0.068 0.045 0.198	Log [A1] mol/1 -5,999 -50,436 -5,723 -5,723 -5,341 -5,808 -5,393 -6,389 -5,808 -5,808 -5,699 -5,599 -5,599 -5,778 -5,134	Log(Al ⁻³) :1041 -13,712 -11,678 -13,023 -12,001 -14,12 -14,12 -14,365 -13,092 -14,452 -12,034 -13,279 -11,468
Sample Cotie R1 (Rosetta beforeTala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosstahat) R5 (Salt & Soda Co.effluents) R6 (El-Malla Co.) R7(Rosetta at	Sample Description Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample	Cu) mg1/) 0.009 0.074 0.047 0.085 0.011 0.066 0.007 0.087 0.082 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - - -5,874 -6,762 -5,984 -6,958 -5,984 -5,864 - -	Lag(Cu ²) m2/l -8.48 -7,448 -7,634 -7,528 -8.49 -7,634 -8.78 -7,221 -7,261 	[A]] mg/l 0.027 0.244 0.051 0.123 0.042 0.042 0.011 0.042 0.054 0.068 0.045 0.198	Log [A1] mol/1 -5,599 -50,436 -5,723 -5,741 -5,808 -5,393 -6,389 -5,808 -5,699 -5,599 -5,778 -5,134	Log(Al ⁻²) mol/1 -13,712 -11,678 -13,023 -12,001 -14,12 -11,945 -14,365 -13,092 -14,452 -12,034 -13,279 -11,468 -
Sample Code R1 (Rosetta before Tala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosstahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.) R7(Rosetta at Benofer)	Sample Description Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract Water Sample Sediment extract	Cu mg1/) 0.309 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - - -5,874 -6,762 -5,584 -6,958 -5,864 - - - - - -	Lag(Cu ³²) m2/l -8.48 -7.448 -7.634 -7.528 -8.49 -7.634 -7.634 -7.221 -7.261 	[A]] mg/l 0.027 0.244 0.051 0.123 0.042 0.042 0.011 0.042 0.054 0.068 0.045 0.198 - 0.049	Log [A1] mol/1 -5,599 -50,436 -5,723 -5,723 -5,341 -5,808 -5,393 -6,389 -5,808 -5,699 -5,599 -5,778 -5,134 -5,741	Log(A(**)) mol/1 -13,712 -11,678 -13,023 -12,001 -14,12 -11,945 -14,365 -:3,092 -14,452 -12,034 -13,279 -11,468 - - -14,411
Sample Code R1 (Rosetta before Tala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosstahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.) R7(Rosetta at Benofer) R8(Rosetta at	Sample Description Water Sample Sediment extract Water Sample	Cu] mgl/) 0.009 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - -5,874 -6,762 -5,984 -6,958 -5,864 - - - -5,889 - -	Lag(Cu ³²) m2/l -8.48 -7.448 -7.448 -7.634 -7.528 -8.49 -7.634 -8.78 -7.221 -7.261 -7.261 	[A]} mg/l 0.027 0.244 0.051 0.123 0.042 0.042 0.011 0.042 0.054 0.068 0.045 0.198 - - 0.049 0.05	Log [A1] mul/1 -5,5999 -50,436 -5,723 -5,723 -5,723 -5,708 -5,808 -5,808 -5,808 -5,808 -5,809 -5,809 -5,778 -5,734 -5,741 -5,732	Log(Al ^{*3}) mol1 -13,712 -11,678 -13,023 -12,001 -14,12 -11,945 -14,365 -14,365 -14,365 -14,452 -12,034 -13,279 -11,468 - - -14,411 -14,722
Sample Cotie R1 (Rosetta before Tala Drain) R2 (Tala mix Rosetta) R3(Rosetta alter Tala Drain) R4(El-mosstahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.) R7(Rosetta at Benofer) R8(Rosetta at Ebig)	Sample Description Water Sample Sediment extract Water Sample Sediment extract	Cu) mg1// 0.009 0.074 	Log[Cu] mol/: -6,849 -5.934 - - -6,131 - - -5,874 -6,762 -5,984 -6,958 -5,864 - - - - - - - - - - - - - - - - - - -	Lag(Cu ³²) m2/l -8.48 -7.446 -7.634 -7.528 -8.49 -7.634 -8.78 -7.221 -7.261 	[A]} mg/l 0.027 0.244 0.051 0.123 0.042 0.109 0.011 0.042 0.054 0.068 0.045 0.198 - 0.049 0.05 0.055 0.959	Log [A1] mol/1 -5,5999 -50,436 -5,723 -5,723 -5,741 -5,808 -5,808 -5,808 -5,808 -5,808 -5,808 -5,809 -5,808 -5,809 -5,708 -5,778 -5,732 -5,741 -5,732 -4,449	Log(Al ²³) ::::::::::::::::::::::::::::::::::::
Sample Cotie R1 (Rosetta before Tala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosstahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.) R7(Rosetta at Benofer) R8(Rosetta at Ebig) R9 (Rosetta at	Sample Description Water Sample Sediment extract Water Sample Sediment extract	Cu) mg1/) 0.009 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - -5,874 -6,762 -5,984 -6,958 -5,864 - - - -5,889 - - - - -7,024 -7,502	Lag(Cu ²) m2N -8.48 -7.448 -7,834 -7,528 -8.49 -7,528 -8.49 -7,528 -8.49 -7,524 -7,524 -7,524 -7,524 -7,524 -7,526 -7,261 -7,261 -7,261 -7,834 -7,261 -7,834 -7,261 -7,261 -7,261 -7,261 -7,261 -7,261 -7,261 -7,261 -7,261 -7,261 -7,261 -7,27,27 -7,27,27 -7,528 -7,634 -7,634 -7,528 -7,634 -7,528 -7,634 -7,528 	[A]] mg/l 0.027 0.244 0.051 0.123 0.042 0.109 0.011 0.042 0.054 0.068 0.045 0.198 - D.049 0.05 0.959 0.046	Log [A1] mol/1 -5,999 -50,436 -5,723 -5,723 -5,723 -5,741 -5,808 -5,808 -5,808 -5,808 -5,808 -5,809 -5,808 -5,699 -5,778 -5,738 -5,734 -5,732 -5,768	Log(A(¹⁻³)) :nol/1 -13,712 -11,678 -13,023 -12,001 -14,12 -14,12 -14,365 -13,092 -14,452 -12,034 -13,279 -11,468 - - -14,411 -14,722 -11,603 -13,609
Sample Cotie R1 (Rosetta before Tala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-moss tahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.) R7(Rosetta at Benofer) R8(Rosetta at Ebig) R9 (Rosetta at Farastek)	Sample Description Water Sample Sediment extract Water Sample Sediment extract	Cu) mg1/) 0.309 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - -5,874 -6,762 -5,984 -6,958 -5,864 - - - - -7,024 -7,502 -6,235	Lag(Cu ²) m2N -8.48 -7,448 -7,834 -7,528 -8.49 -7,528 -8.49 -7,524 -8.78 -7,221 -7,261 -8.63 -8.915 -7,802	[A]] mg/l 0.027 0.244 0.051 0.123 0.042 0.109 0.011 0.042 0.054 0.068 0.045 0.198 	Log [A1] mol/1 -5,999 -50,436 -5,723 -5,723 -5,723 -5,723 -5,808 -5,808 -5,808 -5,808 -5,808 -5,808 -5,809 -5,599 -5,778 -5,778 -5,732 -5,741 -5,752 -5,768 -5,126	Log(Al ⁻²) :106/1 -13,712 -11,678 -13,023 -12,001 -14,12 -14,12 -14,365 -13,092 -14,452 -14,452 -12,034 -13,279 -11,468 - - -14,411 -14,722 -11,603 -13,609 -12,172
Sample Cotie R1 (Rosetta before Tala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosstahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.) R7(Rosetta at Benofer) R8(Rosetta at Ebig) R9 (Rosetta at Farastek) R10 (Rosetta at	Sample Description Water Sample Sediment extract Water Sample Sediment extract	Cu) mgl/) 0.009 0.074 0.047 0.085 0.011 0.066 0.007 0.082 0.082 0.082 0.085 0.087 0.085 0.067 -	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - -5,874 -6,762 -5,984 -6,958 -5,864 - - - - -,7,024 -7,502 -6,235 -	Lag(Cu' ²) m2/l -8.48 -7,448 -7,634 -7,528 -8.49 -7,634 -8.78 -7,221 -7,261 -7,261 -7,261 -7,261 -7,834 -7,210 -7,261 -7,834 -7,210 -7,220 -7,220 	[A]] mg/l 0.027 0.244 0.051 0.123 0.042 0.109 0.011 0.042 0.054 0.068 0.045 0.045 0.198 0.049 0.05 0.959 0.046 0.202 0.042	Log [A1] mal/1 -5,999 -50,436 -5,723 -5,341 -5,808 -5,393 -6,389 -5,808 -5,699 -5,599 -5,599 -5,778 -5,134 - - - -5,741 -5,732 -4,449 -5,768 -5,126 -5,808	Log(Al ⁻²) 100/1 -13,712 -11,678 -13,023 -12,001 -14,12 -14,12 -14,365 -13,092 -14,452 -12,034 -13,279 -11,468 - - -14,411 -14,603 -13,609 -12,172 -11,886
Sample Cotie R1 (Rosetta before Tala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosstahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.) R7(Rosetta at Benofer) R8(Rosetta at Ebig) R9 (Rosetta at Farastek) R10 (Rosetta at Mahalet abo ali)	Sample Description Water Sample Sediment extract Water Sample Sediment extract	Cu) mg1/) 0.309 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - -5,874 -6,762 -5,984 -6,958 -5,864 - - - - - - - - -,7,024 -7,502 - - - - - - - - - - - - - - - - - - -	Lag(Cu' ²) m2/l -8.48 -7.448 -7.634 -7.528 -8.49 -7.634 -8.78 -7.221 -7.261 	[A]] mg/l 0.027 0.244 0.051 0.123 0.042 0.042 0.011 0.042 0.054 0.068 0.045 0.055 0.959 0.046 0.202 0.042 0.053	Log [A1] mal/1 -5,599 -50,436 -5,723 -5,741 -5,808 -5,393 -6,389 -5,808 -5,699 -5,778 -5,778 -5,778 -5,778 -5,778 -5,732 -5,741 -5,732 -5,768 -5,768 -5,707	Log(Al ⁻²) mol/1 -13,712 -11,678 -13,023 -12,001 -14,12 -14,12 -14,365 -13,092 -14,452 -12,034 -13,279 -11,468 - - -14,411 -34,722 -11,603 -13,609 -12,172 -11,886 -12,545
Sample Code R1 (Rosetta before Tala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosstahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.) R7(Rosetta at Benofer) R8(Rosetta at Ebig) R9 (Rosetta at Farastek) R10 (Rosetta at Mahalet abo ali) R11 (Rosetta at	Sample Description Water Sample Sediment extract Water Sample	Cu mg1/) 0.309 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - - -5,874 -6,762 -5,584 -6,958 -5,864 - - - - - - - - - - - - - - - - - - -	Lag(Cu ³²) m2/l -8.48 -7.448 -7.528 -8.49 -7.528 -8.49 -7.634 -7.528 -8.49 -7.634 -7.261 -7.261 -8.63 -8.516 -7.802 -7.651 	[A]] mg/l 0.027 0.244 0.051 0.123 0.042 0.09 0.011 0.042 0.054 0.068 0.045 0.198 - D.049 0.05 0.959 0.046 0.202 0.042 0.053 0.015	Log [A1] mol/1 -5,599 -50,436 -5,723 -5,741 -5,808 -5,599 -5,599 -5,778 -5,134 - - -5,741 -5,732 -2,449 -5,768 -5,126 -5,808 -5,707 -6,255	Log(Al ⁻³) mol/l -13,712 -11,678 -13,023 -12,001 -14,12 -14,12 -14,365 -3,092 -14,452 -12,034 -13,279 -11,468 - - -14,411 -14,722 -11,603 -13,609 -12,172 -11,686 -J2,545 -12,866
Sample Code R1 (Rosetta before Tala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-mosstahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.) R7(Rosetta at Benofer) R8(Rosetta at Ebig) R9 (Rosetta at Ebig) R9 (Rosetta at Mahalet abo ali) R11 (Rosetta at Desouk)	Sample Description Water Sample Sediment extract Water Sample Sediment extract	Cu mg1/) 0.309 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - -5,874 -6,762 -5,584 -6,958 -5,864 - - - - - - - - - - - - - - - - - - -	Lag(Cu ³²) m2/l -8.48 -7.448 -7.634 -7.528 -8.49 -7.634 -8.78 -7.221 -7.261 	<pre>{Al} mg/l 0.027 0.244 0.051 0.123 0.042 0.109 0.011 0.042 0.054 0.068 0.045 0.198 - 0.045 0.198 - 0.045 0.05 0.959 0.046 0.202 0.042 0.053 0.015 0.027</pre>	Log [A1] mol/1 -5,599 -50,436 -5,723 -5,723 -5,341 -5,808 -5,393 -6,389 -5,808 -5,699 -5,778 -5,778 -5,778 -5,732 -4,449 -5,768 -5,126 -5,808 -5,707 -6,255 -5,999	Log(Al ⁻³) :rjol1 -13,712 -11,678 -13,023 -12,001 -14,12 -14,365 -14,365 -14,365 -14,452 -14,452 -14,452 -14,452 -14,452 -14,452 -14,452 -14,452 -14,452 -14,452 -14,452 -11,603 -13,609 -12,172 -11,886 -12,545 -12,866 -13,155
Sample Cotie R1 (Rosetta before Tala Drain) R2 (Tala mix Rosetta) R3(Rosetta after Tala Drain) R4(El-moss tahat) R4(El-moss tahat) R5 (Salt & Soda Co.effluents) R6 (El-Malia Co.) R7(Rosetta at Benofer) R8(Rosetta at Ebig) R9 (Rosetta at Ebig) R9 (Rosetta at Farastek) R10 (Rosetta at Mahalet abo ali) R11 (Rosetta at Desouk) R12 (Rosetta at	Sample Description Water Sample Sediment extract Water Sample	Cu) mg1/) 0.009 0.074 	Log[Cu] mol/: -6,849 -5934 - - -6,131 - - -5,874 -6,762 -5,984 -6,958 -5,864 - - - - - - - - - - - - - - - - - - -	Lag(Cu ²²) m2M -8.48 -7.448 -7,834 -7,528 -8.49 -7,528 -8.49 -7,534 -8.78 -7,261 -7,261 -7,261 -7,651 -7,651 -7,656	[A]] mg/l 0.027 0.244 0.051 0.123 0.042 0.109 0.011 0.042 0.054 0.068 0.045 0.198 - D.049 0.05 0.959 0.046 0.202 0.042 0.053 0.015 0.027 -	Log [A1] mol/1 -5,999 -50,436 -5,723 -5,723 -5,723 -5,723 -5,780 -5,508 -5,509 -5,599 -5,599 -5,778 -5,134 - - - -5,741 -5,732 -5,741 -5,732 -5,768 -5,768 -5,707 -6,255 -5,999 -7	Log(A(¹⁻³)) 1001 -13,712 -11,678 -13,023 -12,001 -14,12 -14,165 -13,092 -14,452 -14,452 -12,034 -13,279 -11,468 - - -14,411 -14,722 -11,603 -13,609 -12,172 -11,886 -12,545 -12,545 -13,155 -

Appendix 2, Results of total and ion activities of trace metals in water and sediment extract sample
--

GUIDE FOR AUTHORS
COUDE FOR AUTHORS Description 1. Manuscripts should be written in English on paper size A-4. 2. Three copies of the manuscript should be submitted for review purposes. 3. Manuscripts should be typewritten and double spaced. Leave good margins on each side of the paper. Maximum number of pages is limited to 15 pages. 4. The entire manuscript should be pegineted starting with the title page. 5. The metric system should be used and temperatures expressed in degrees Claius or Kelvin. The use of S.I. units is recommended. 6. Manuscripte should be used and temperatures expressed in degrees Claius or Kelvin. The use of S.I. units is recommended. 6. Manuscripte should he used for farturing to if author(s). c) Abstract 7. TECE reserves the privilege of returning to the author for revision accepted manuscripts and illustrations which are not in the form given in this guide. 8. Sublasion of an article is understood to lemply that the article is original and unpublished and is not considered for publication elsewhere. 9. The abstract should not exceed 500 words. TRAILS 11. Able should be typerritten on separate pages, added to the manuscript. They should network being. 2. Tables should be typerritten on separate pages, added to the manuscript. They should network the isolation of the table. 3. Tables should not exceed the printed area of the page. 3. Tables should be table. 3. Tables should not exceed the print
 1. Formulas should be typewritten, if possible. Ample space should be left around the formula. 2. Subctipts and supertripts should be set off clearly. 3. Greek letters and other non-Latin or handwritten symbols should be explained in the margin where they are first used. 4. The meaning of all symbols should be given immediately after the equation in which they are first used. 5. Equations should be numbered serially on the right-hand side and in parantheses. 6. In chemical formulas the valence of ions should be given as e.g. : Ca²⁺ and CO₃²⁻ rether than Ca⁺⁺ and CO₃ 7. Isotope number should precede the symbol e.g. : 180. <u>References</u> 1. All references to publications made in the text should be presented in a list of references following after the text. The manuscript should be carefully checked to ensure that the spelling of author's names and dates are exactly the same in the text as in the reference list. 2. References in the text should be arranged chronologically. The list of references should be arranged alphabetically by authors' names, and chronologically per author. 3. The following system should be used for arranging references: a) For Periodicals: Lamb, H.H., Climate Engineering, 7,87-95 [1971].
 b) For Books : Vanneurs, A.P., Petroleum Economics, Risevier (1972). 4. Periodical names can be given in full or abbreviated. <u>POOTNOTES</u> Footnotes should only be used if absolutely essential. If used, footnotes abould be indicated by astrisks and kept as short as possible. If used, footnotes abould be indicated by astrisks and kept as short as possible. If used, footnotes about be indicated by astrisks and kept as short as possible. If used, footnotes about be indicated by astrisks and kept as short as possible. In a liphot footnotes about be indicated by astrisks and kept as short as possible. If used, footnotes about be indicated by astrisks and kept as short as possible. If used, footnotes about be indicated by astrisks and kept as short as possible. In a liphot be indicated by astrisks and kept as short as possible. In a liphot be indicated by astrisks and kept as short as possible. In a liphot be indicated by astrisks and kept as short as possible. In a liphot be indicated by astrisks and kept as short as possible. In a liphot be indicated by astrisks and kept as short as possible. In a liphot be indicated by astrisks and kept as short as possible. In a liphot be indicated by astrisks and kept as short as possible. In a control be indicated by astrisks and kept as short as possible. In a control be indicated by astrisks and kept as short as possible. In a control be indicated by astrisks and kept as short as possible. In a control be indicated by astrisks and kept as short as possible. In a control be indicated by astrisks and kept as short as po