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Abstract 
The analysis of combinatorics of sequences of sharp separation systems is a 

well-studied problem in the field of chemical engineering: first Thompson and King 
(1972) present a closed-form expression for determining the number of possible 
separation sequences for separating an n-component mixture into pure products by 
using simple (one input and two outputs) sharp separators. Then, Shoaei and 
Sommerfeld (1986) show that this determination could be interpreted in term of 
Catalan numbers; and recently Wahl and Lien (1990) derive this formula form a 
generating function. This paper presents a closed-form expression for the number of 
different possible separation sequences when complex ( one input and three or more 
outputs) separators with two or three outputs are used, and finally a generating 
function of the number of distinct complex separators is given. 

Sequences of sharp separators: recursive producers 
The design of sharp separation sequences is one of the most investigated 

problem in the synthesis of chemical units. It consists in generating all different 
possible separation schemes when an n-component mixture has to be separated into 
pure products, with the main assumptions: 

- only sharp separators are used, i.e. each component of the feed stream 
exists in only one output stream of the separator; 

- the components are ranked in any stream; 
- this ranked list of components is invariable; 
- mixture or division of intermediate streams is prohibited. 

The number of separation sequences may be defined recursively for sequences 
involving complex sharp separators (Shoaei and Sommerfeld, 1986; Wahl and 
Lien, 1990; Domenech et al., 1991). For the case of sharp two-output 
separators {see Figure 1), the number Sn of distinct sequences for an n-
component fed-stream may be stated as: 

So=0 

(I) 
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Figure 1: A sharp two-output separator 

A three-output separator can be illustrated by a distillation column involving a 
side stream (see figure 2). 
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Figure 2: A sharp three-output separator 

The earlier works of Petlyuk et al. (1965), Elaahii and Luyben (1983) or 
Alatiqui and Luyben (1985) show the interest of this type of separator in 
practice, for small values of n as a matter of fact. The number of possible 
separation schemes, when each sharp separator is allowed to have either two 
or three outputs, is then (W ah land Lien, 1990; Domenech etal., 1991) defined 
by: 

S0=\ 
St=l (2) 
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In the general case, the minimum number of separators used to separate n 
components to be achieved is theoretically one and the maximum number is n-
1 (in that last case, only simple sharp separators are used). Then, the number 
of possible separation schemes is formulated by the relation below (Domenech 
etal., 1991): 

S0 = l 
S,=l (3) 

fl-2 

* B | (I i2 ' , .-i*t 

with 

/ l e [ l , * - l - j t ] 
f2e[l,n-l-{Jfe-l)-il] 

ik+l € [ltn — 1 — /l —12 — -ik] 

Sequences of sharp separation: closed form formulae 

Thompson and King (1972) first presented a closed form expression 
for Sn for sequences involving only simple sharp separators: 

S = (2(n-l)! (4) 
" « ! ( * - ] ) ! 

Shoaei and Sommerfeld (1986) pointed out that this determination is an 
application of Catalan numbers. 

When two-or-three-output separators are admitted a closed form 
equation can be derived (Floquet et al, 2991): 

{—1 
U J (2«-2-QI 
h Hnl{n~2i-\)\ 

(5) 

where the function E(x) represents the bracket function. It can be noted that: 

(?) s =<fc!)!+ y <2"-2^( (6, 
* n\{n-\)\ fa / ln!(n-2/-l)! 

The first term is equivalent to the number of sequences found by 
Thompson and King formuia and the second term corresponds tc the number 
of sequences where i three-output separators can appear. The function E 
expresses that for the separation of an n-component mixture, the maximum 

number of three-output column is equal to E\ 
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The formulation of a closed form expression, when the number of 
outputs for each separator is not specified, is a rather difficult task (Floquet et 
al.,1991). For an n-component mixture, it leads to: 

f n + m--n 
s„ = E-

m~\ ; 
mks/n tn fli/S/rt^ 

m-m n-2 m j+i 

m 
(7) 

where 

In = {mn_2imn_-i,...,mi,m<i I m0 + 2ml + .,..+ (/ + l)/n/ + ... + (n-l)mw_2 =n-l} 

m = 2X 
mkuln 

Then 

*.= I (n + /w-l) 

with the same definition of In and m. 

(8) 

The main feature of these expressions is the definition of the set In of admissible 
structures of sharp separation for n components. A structure is a set of sequences 
involving the same number of same type separators. For example, the two following 
sequences belong to the same structure (made up of two simple separators and a three-
output column): 

► 

► ► 

1 ► F 

A 

R 

C 

C 
D 

D 
, , F. 

Figure 3a: Two sequences of a same structure 

and the following one belong to a different structure: 

A A 

**-_J 

► 

—* R 

► 
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Figure 3b: Two sequences of a different structure 

The definition of In involves an integer relation between the number mk of possible 
separators with (k+2) outputs. When the number of outputs is limited to two (simple 
separators) or three, then the definition of In is a trivial task. It becomes: 

mo = n-l andm=mo = n-I for simple separators (the number of simple sharp 
separators for separating an n-component mixture is n-1) and relation (8) is then 
equivalent to (4); 

mo +2mi = n-1 and m = mo + mi for two-or-three output separators. The 
substitution of mo by n-I-2mi in (8) leads to (5). 

For complex separators (more than three outputs), the use of equation (8) 
needs the resolution in the space of integer numbers of: 

m0 +2mi + ....+ (n-I)mn.2 = n-l (9) 
The enumeration of all integer solutions of such an equation for an important value of 
n is not an easy work. However, we can enumerate the total number ns of elements of 
In corresponding to an equation of this type, i.e. the number of distinct structures of 
separation schemes. The main enumeration steps are the following: 

l a step: calculate the number of integer solutions of equation 
mo = n-1 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

"s I 1 1 1 I 1 . 1 1 1 1 1 I 1 1 1 1 1 1 

TabJel: number of integer solutions of mo = n-1. 

,nd 2 step: calculate the number of integer solutions of equation 
mo +2ml - n-1, i.e. repeat the 1st step with right shifts of two positions. 
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n 1 2 3 4 5 6 17 8 \9 10 11 1 12 . 13 14 1 15 .... 
mi=0 1 ] 1 l | l 11 ! l 1 * i i i 1 ! 1 
1711 = 1 1 1 I i 1 1 1 t 

mi=2 i I 1 1 i ! i i i 
mj =3 1 I 
mi =4 1 
mi=5 
mi=6 
mj=7 
ns 

1 1 J2 2 3 3 4 4 5 5 6 6 7 7 8 8 
Table2: number of i ateger so utions of mo +2mi= n-1. 

3rd step; calculate the number of integer solutions of equation 
mo +2ml+3m2

 = n-1, i.e. repeat the 2nd step with right shifts of three positions. 

n 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 . . r • 

mi=0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 
rri]=J 1 1 2 2 3 3 4 4 5 5 6 6 7 
mi =2 1 1 2 2 3 3 4 4 5 5 
mi=3 i 1 2 2 3 3 4 
mi-4 1 1 2 2 
mi-5 1 
ns 1 1 2 3 4 5 7 8 10 12 14 16 19 21 24 27 

Tab! c3: r lumfc er o inte gers oluti ons c >f m0 +2ml+3m 2 = n-l 

4 step and others: the calculation of the number of integer solutions of equation 
mo +2m l+3m2 +3m.|= n-1 leads to the following table. The procedure is repeated until 
the total desirable calculation. 

n 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 .... 
m3=0 I 1 2 3 4 5 7 S 10 12 14 16 19 21 24 27 
m3=l 1 1 2 3 4 5 7 8 10 12 14 16 
nri3=2 \ 1 2 3 4 5 7 8 
m3=3 1 1 2 3 
ns I 1 2 3 5 6 9 11 15 18 23 27 34 39 47 54 

Table4: number of integer solutions of mo -t-2ml+3ni2 +3nv= n-1 
The number ns can easily be found with this above procedure, for example by using a 
spreadsheet. It can also be directly computed with a recurring kth-order equation, 
where k is the index of the last mi in the left hand side term of equation (9) and the 
periodicity is the lowest common multiple of 1,2,3,.. ..,k, for example, the number ns 
of solutions of mo +2mi = n-1 is: 

ns = A(n-1)-B; where A=l/2 an B = 1 and 1/2 alternatively 
And the number of solutions of mo +2ml-K3m2 = n-1 is : 

ns = A(n-l)2 + B(n-1)+ C; where A = 1/12, B=l/2 and C=l, 
5/12,2/3,3/4,2/3,5/12 and 1 successively, 
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The detailed procedure for determining the values of A,B,C,.,. is exposed in 
Appendix I. the values of ns as a function n are given in the following table: 

n ns 
2 1 
3 2 
4 3 
5 5 
6 7 
7 11 
8 15 
9 22 
10 30 

Table5: number of structures of sharp separators. 

Finally, the number of sequences of sharp separators is summarized in table6: 

Number of 
components 2 

Number of 
sequences of 

simple separators 
(one input-two 

outputs) 

Number of 
sequences of two or 

three output 
separators 

Number of 
sequences of 

complex (from two 
to n outputs) 
separators 

2 1 1 1 
3 2 3 3 
4 5 10 11 
5 14 38 45 
6 42 154 197 
7 132 654 903 
8 429 2871 4279 
9 1430 12925 20793 
10 4862 59345 103049 

Table6: number of sequences of sharp separators 

sequences of sharp separators: generating function use 

The use of generating functions is an elegant way to derive Thompson and 
King formula (1) (or (4)) and it is very often described in combinatorics textbooks. It 
consists in determining the infinite power series expansion of a given function that 
supplies the coefficients Sn of Catalan numbers. The generating function for equation 
(1) (or (4)) may be expressed as: 

g(x) = So + Six + S2x2 + +Snx"+ ... (10) 
where So = 0;S| = 1 
and Sn (n>2) given by eq. (1) or (4) 

then, (Wahl and Lien, 1990): 
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gOO 
l - V l - 4 * x < 1/4 (11) 

is solution ofeq. (10). 
For the case of two or three separation sequences, the generating function g(x) is: 

g(x) = S0 + S,x^S2x2+ -f-Snxn+...(12) 
= l+x+ + Snxn+... 

where So - 0; Si = 1 
and Sn (n >. 2) done by eq. (2) or (5) 

In order to initialize the recursive formula (10) and (12), the values of SO and SI, 
without physical sense, were chosen. 
Then, (Wahl and Lien, 1990) g(x) is proved to be one of the real solution of the third 
degree equation: 

^<x)-2g*(x)+x+l=0 (13) 

The_ first step of the solution of this classical equation is the elimination of the term 

(14) 

■2g2(x): 

g(x) = f(x)+2/3 

So, the equation (13) is then equivalent to: 

(15) 

Solving this equation (15) for the case x s ]—l,5/27f (functions f and g are defined 
for x = 0) leads to three real roots: 

(16) 

/ l (x) = - c o s p 

4 2n 
/2(;t) = -cos(p + y ) 

4 In 
/3(*) = - c o s ( p - — ) 

. . I .-(27x + lL . mthtp = -arccos(—- ) 0 < <p < % 

From equations (12) and (14) it follows that f(0) = 1/3 and \f(df;dx)(0) = 1, and 
therefore solutions fe(x) and f3(x) can be eliminated. Thus, the generating function 
g(x) is: 

r , 4 2 

with<p = - arccos(— 0 < tp < it 
3 16 

andxe}-\,5/27[ 

(17) 
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The equivalence of equations (17) and (5) appears to be very hard to strictly derive, 
however we can compute the first elements of the power series expansion for 
checking that equation (5) can be generated by the function g(x) given in (17). 
From Mac Laurin's series expansion: 

1! 2! n! 

where g ( n ' (0 )=^f (0) 

It comes g(0)=l from (13) =>So= 1 in (12) 

g'(x) = , w , *„ from (12) => g'(0) =1 =>S, = 1 in (12) 

g"(x) = 

g"'(x) 

g(x)(4-3g(x)) 
2(3g(x)-2) ^ 

(g(x)(4-3g(x)))3 

6(15g2(x)-20g(x)+8) 
(g(x)(4-3g(x)))! 

g " ( 0 ) = 2 ^ S 2 = l 

=> g'"(0)= 18 =>S3 = 3 

(«)/„■» -g'n;(x) n\ TMA.CS<*)) =>S„ = Dn(g(0))=D„(t) 
CgW(4-3g(x)))-

where Dn(g(x)) is a (n-l) degree polynomial expression of g(x) with 

D„,(g(x» 
D\ (g(x))(g(x)(4 - 3g(*))2 + 2(2n - \)D„{g{x))Qg(x) - 2)) 

n + ] 
/or n S 2 /Ae /?roo/ ij given in Appendex B 

(19) 

These relations give another recursive expression (distinct from relation (2)) for 
determining the number Sn of sequences with two-or-three-output column for 
separating an n-component mixture. Table 7 shows the numerical values obtained 
from relation (19); it can be observed that the values of Sn given in table 7 are the 
same that those reported in the third column of Table 6. So, from this indirect 
derivation, the equivalence of equations (17) and (5) can be admitted. 
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Number of 
components 

n 

Constant 
coefficient 

in 
Dn(gfx)) 

Coefficient 
ofx 

in 
D„(g(x)) 

Coefficient 
ofx2 

in 
Dn(g(xl) 

Coefficient 
ofx3 

in 
Dn(gM) 

Coefficient 
ofx4 

in 
Dn(g(x)) 

Dn(g(0)}= 
Pad) 

1 I 1 
2 -2 3 i i 
3 8 -20 15 3 
4 -40 140 -180 90 | 10 
5 224 -1008 1812 -1584 584 38 

Table7: number of sequences of separation given by relation (19J 

Number of distinct sharp separators: generating function use 
From Table 6, it can be seen for example that the four-component problem has 

five different sequences of simple separators. Each sequence involves three 
separators, giving 15 separators all in all. In fact, there are only 10 distinct simple 
separators (see Table 8). In the same manner, there are 10 sequences of twc-or-three 
different separators for the four-components problem, but only 15 distinct separators. 
The number of distinct separators, as noted by Wahl and Lien (1990) TS(n)r for an n-
component mixture to be separated with r-output separators, is important in practice 
because it gives a lower bound on the tola] computational effort. 

n Distinct separators number 
n=2 AJB 
n=3 A/BC;AB/C 

A/B;B/C 
A/B/C 

n=4 A/BCD;AB/CD;ABC/D 
A/BC;AB/C;B/CD;BC/D 

A/B;B/C;C/D 
A/B/CD;A/BC/D;AB/C/D 

A/B/C;B/C/D 
TahleS: Distinct separators for an- n-component mixture (two-or-three output 
separators) 

The values of TS(n)r and TS(n) (TS(n)represents the total number of distinct 
separators, having from two to n output, for separating an n-component mixture) 
given by Wahl and Lien (1990) are the following: 
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andTS(n) = £ 
k~3 

(21) 

From table 8, it can be proved recursively (see Appendix 3) that the values of TS(n)r 
and TS(n) can also be expressed by: 

n-\ 

7S(„)2=£/<«-;) n>2 

M 2 
n>3 

tt-r+i 
TS(n)r = £ 

M 
n>r 

(22) 

n-{r-l) 
Then : TS(n)r = £ *(«-/)! 

- ( « - f - ( f - l ) ) [ ( / - 1 ) ! 
,«>/ - (23) 

And TS(n) Z^CO, 
r«2 

(24) 

These values constitutes the lower part (from the 4th column) of the binomial theorem 
coefficient, as it is shown in figure 4, 

The use of generating functions to derive the above formula (23) and (24) (or 
relations (20) and (21) is now presented. Let i2(x) the generating function of (he 
coefficient TS(n)2: 

i2(x) = x2(\ + 4x + l0x2+2Qx3+ + (TV +...) (25) 

w=Z 
ff-2 

Wfi 
(26) 

(hat is to say in a developed form: 

So 3!i! 
(27) 

and dividing by 3! It comes: 
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t> (+3 

i1{x) = x*{\+YY\Ji;x') 
J-0 J*A 

and finally; 

,- j W = x 2 ( ] - x ) - < = - ^ -
(l-x) 

(28) 

(29) 

A generalization of this result to separators with r output streams leads to: 

/3(x) = x3(l-x)-5 

( l -x) 
for r =3 (30) 

ir{x) = x'{\-x) ■r-2 — for the general case (31) a-*r3 

Thus, the generating function of TS(n) is given by : 

<(x) = x 2 J / , (x ) 
r-2 

(32) 

. , . x2
 n x x2 

( l -x) l - x ( l -x ) 
(33) 

/ ( * ) 
( l -x) 4 

f \ 

1 

l — £ _ 
V l-x 

-l/2<x<;l/2 (34) 

' W = (35) 
( l -2x)( l -x) 3 

Table 9 shows the values of TS(n)2, TS(n)3 „„d TS(n) versus n; and the rate 
number of distinct separators to the total number of separators of all sequences. 
It can be noted that this rate drastically decreases when the number of 
components increases. 

n 2 3 4 5 6 7 
TS(n)2 1 4 10 20 35 56 
TS(n)3 0 1 5 15 35 70 
TS(n) 1 5 16 42 99 219 

\t\riumbcr of distinct separators; i&ial number of 

separators of till sequences 

100% 100% 61% 30% 13% 5% 

Table9: Number of distinct separators for an- n-component mixture 
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Conclusion 

A non recurrent formulation of the number of sharp separation sequences 
involving complex separators (i.e. separators having more than two outputs) is 
derived in this paper This derivation requires the numbering of all possible separation 
structures determined by solving equations in the space of integer numbers. 

The use of generating functions is an elegant way to formulate the number of 
distinct separators sequences and the number of tvvo-or-three output separator 
sequences for an n-component mixture. It can be observed that the number of distinct 
separators is always small; it is an interesting feature insofar as this number gives a 
lower bound on the total computational effort for scanning the tree of separation 
sequences. 

Thus, it appears that the elucidation of the main combinatoric points will 
enable in the next future the solution of complex sharp separation problems by means 
of combinatorial optimization techniques, as for example the simulated annealing 
procedure. 

TESCE,Vol.33,No.2 -65- April 2007 



Appendix 1: Determination of the coefficients of equations ns = P(n) 
Let mo+2mi + ...,+imj_i+....-r (k-H)m]< = n-l(ne N) an equation of the 

type (9), and n3 the number of integer solutions of a such an equation then, 
(G.Th.Guilbaud, 1990), ns is given by ; 

ns = ak,i(n-I)k + ak.Iti(n-l)JC',+ +aifi(n-l)+a<y 
where ajj are periodic coefficients, with period T=Iowest common multiple of 
numbers l,2,...,k-H. The determination of all &j (i=l to T) coefficients is made by 
solving the T following systems: 

fl*,/("-1)*+flri-!«/(ff-0*",+»»+flll/(»-y+flTofi=ai1i 

akJ{n-\ + KT)k +ak_v{n-\ + KT)k~x + .„+au(n-\ + KT) + a^=akMU 

where a}i is thejm value (1 £j<k+l) of ns for the i* period, i.e. the (ij)th value 
of n3 given, for example, in Tables 2 to 4. These systems are equivalent to; 

<a„\ ( a\\ 

fl-1 (n-\)2 (n-\)* 
n-l + T (w-l + T)2 ( r t - l+J)* 

J w- l+AT ( « - l + *T)2 (w-l + AT)*^ 

A+l 

^ ' ; v ' / 

/ 

a, 

a 

,i=l to T 

For solving these T systems, the T previous Van der Monde Matrices must be 
inverted. The method of solution (W.H. Press et al., 1988) is closely related to 
Lagrange's polynomial interpolation formula, Let Pj(x) be the polynomial of degree k 
defined by: 

pjw= n ,,T m =2>,.** j=itok 

Then the values of coefficients are: 

A+l 
AJ,i=Z4i f l ffl j=l tok, i=l toT 

/-i 
For example, let n5 the number of integer solutions of the equation: 
mo +2mt +3 m2+4m3 = n-1 
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Then, 
ns = a3,,(n-l)3 + a^n- l ) 2 + aij(n-l) + ao., 

where a^ are periodic coefficients, with period T = lowest common multiple of 
numbers 1,2,3,4 = 12. The determination of all ajpj (i=l to 12) coefficients is made by 
the solution of the 12 following systems: 

a3,i(*-l)3 + a3 t l(*-l)2 + fl,,, (n -1) + a0.. = « u 
^ ( f l - l + r ) 3 + f l j / n - l + 7)2+fl l ((w-lrJ ,)-i-GD( =a2, i 
av(n-\ + 2Ty +a2l(n-\ + 2T)2 +... + a\J(n-\+2T) + a<il = a3,i 

1=1 to 12 

where a 

( \ 1 2 3 5 6 9 11 15 18 23 27^ 
34 39 47 54 64 72 84 94 108 120 136 150 
169 185 206 225 249 270 297 321 351 378 411 441 

^478 511 551 588 632 672 720 764 816 864 920 972J 
the first line of the previous matrix is given in Table 4. 
The solutions of the 12 Van der Monde systems leads to 

( « - l + 7,)(/7-l + 2r ) (n- I + 3r)(«-l+371 {n-\){n-\ + 2T){n-\ + 3T) 
6T' a u 2T a 

(n-l)(n-\ + T){n-\+3T (n - l)(w -1 + 2T){n -1 + 37) 
IT 6T- a* 

2,1 

(« - l + r)(/i-l+27 ,) + (w-l+7 rXw-l-f3r) + (n - l+27 , X«- l+3r ) 
Q — _ . 

(n-\)(n-\ + 2T) + (n-\)(n-\ + 3T) + (n-\+2T)(n-\+3T) 
IT' "** " 

(n-l)(n-l-i-T) + (n-\Xn~]+3T) + (n-\ + TXn-l + 3T) 
27° 

(fl-i)(ff-i+r)+(W"iXw-i+2r) + (/»-i + r)(ff-i + 2r) 
67° 

ffw + 

a V 

a*J = 
(n-i + r)+(rt-i + 2r) + (^-i + 3r) (« -i>+(« -1 + 2r> + (n -1 + 3r) 

67° at 2T: ■a v 
(»-i)+(w-i+r) + (n-]+3r) (w-i) + («-i + 7,)-K/7-i + 2r) 

ir a V 6T- a, 
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Hi - 6T3 +
 2Ti 2Ti a>.> +

 6T, a*,> 

with T= 12 

then the computation gives: 

fl/144 I/I44 1/144 1/144 1/144 1/144 1/144 1/144 1/144 1/144 1/144 1/144̂  
5/48 5/48 5/48 5/48 5/48 5/48 5/48 5/48 5/48 5/48 5/48 5/48 
1/2 7/16 1/2 7/16 1/2 7/16 1/2 7/16 1/2 7/16 1/2 7/16 

{ 1 65/144 76/177 81/144 128/144 49/144 108044 65/144 112/144 81/144 92/144 49/144J 

So, 

ns = — (tf-l)3+—(n-\)2+-{n-\) + l ifn =1 mod 12 
144 48 2 

ns - — ( n - l ) 3 + — ( « - l ) 2 + - l {„ - i ) + -£L ifn =2 mod 12 
144^ 48 ' 16 144 

ns = — (n~\y + — (*-l)2 +-[n-\) + — ifn =3 mod 12 
144 48 2 144 

= —( /7 - l ) 3 - f—(n- l ) 2 + —(/i-l) + — ifn =4mod 12 
144^ 48 )6 144 

ns 

ns 

1 , .o 5 , n 2 1 , „ 128 
ns = {w-l)J

+_(„_i)^+_(w_i) + i r r ifn =5 mod 12 
144v 48 2 144 

ns = - i - ( r t _ l ) 3
+ A ( w _ i ) ^ + Z ( „ _ i ) 4 . - l L ifn =6 mod 12 

344 48 16 144 
ns « — («- l ) 3 + — ( « - l ) 2 + I ( r t - l ) - h — ifn =7mod 12 

144 48 2 144 
— (*- l ) 3+ — («-l)2-f- — ( n - l ) + — ifn =8mod 12 
144 48 I6V 144 

3 5 . ,,2 1 , , , 1 1 2 
ns = —(n-\y+ — ( „ - 1 ) ' + - ( H - 1 ) + — ifn = 9mod 12 

144 48 2 144 
ns = — (n-\y +—(n-\)2 +l-(n-]) + — ifn =10mod 12 

144 48 16 144 
ns = — ( W - 1 ) J + — ( t f - l ) 2 + - ( * - l ) + - ^ - ifn =11 mod 12 

144 48 2^ 144 
ns - — ( n - l ) 3 + —(77-I)2 + —(*-!) + — ifn =0 mod 12 

144 48 16 144 
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Appendix 2: Derivation of relation (19) 

This relation (19) is derived recursively. 
Forn = 2: 

AteW)=^"W(gW(4-3gW))3 

= 3g(x)-2 

= _l 
2 

if, for n> 2, the relation (19) is true then: 
2.(3*(x)-2) from (IS) 

flL.ttM)-ttW(4,-y"'WW 
(n + l)! 

n: 
(gW(4-3g(j)))^ ^gW(4^3g(x))):"-> ^ C g ( j : ) ) ) 

{n + l)! dx 

A,(g(*)) 
(gW(4 -3g W *g(a)(4 -3gfr))) 

(« + I) dr 

2/t+l ^ / ^ \ / J i „/„\\\2T-I J 

= (gW(4-3gW))2"t! 

(n + l) 

r g',CgW)-(gW(4-3gW)J2-' 
1 (gW(4-3gW))4n"2 

4.Cg(*))-P» - l).(4g'(*) - 6g(s)g' (s)).(g(x)(4 - 3g(*)))2"'2 

(gW(4-3gW))4"-2 

= g . (gW)(gW(4-3g(x))' +2(2/i-l)£),(gW)C3gW-2)) 
n + l 

because g'(x) = (g(x)(4-3g(x)))"'. 
Then, the relation (19) is also true for n+l 
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Appendix 3: Derivation of equivalence of relations (20) and (22) 

This equivalence is derived recursively. 
For n=2; 

TS(n)2 = 1 from (22) 

TS(n)2 = [ = 1 from (20) 

If, for n>2, relations (20) and (22) are equivalent then: 

TS(n)2 =■£/(«-/) 5=!.. .. fn + fl n3~n 
/ - i 3 

TS(n+l)2 = J / ( « + I-0 = 2[/(«-0 + /] 
*-i 

= TS(n)2 + ~/7(« + l) 

(B-1)H(W + 1) 3w(fl + I) 
6 6 

n(r? + l)(w + 2) , . , 
= i L that proves the equivalence for n+1. 

The derivation of the other relations (for TS(n)3, ..., TS(n)r) is made in the 
same way 
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Notation 

g(x) = generation function of number of sequences Sn 
ir{x) = generation function of number of distinct separators TS(n)r 
ln = set of admissible structure of sharp separators 
m = total number of separators in a sequences = ^ w* 

mk = number of separators with one input and (k+2) outputs 
n = number of components to be separated 
n5 = number of distinct structures = number of elements of In 
Sn = number of separation sequences of an n-component mixture 
TS(n)r = number of distinct separators with r output streams, for an n-

component separation 
TS{n) = total number of distinct separators for sequences of separation 

of n-component mixture 

Literature Cited 

Alatiqui J.EvL and Luyben W.L., "Alternative distillation configurations for 
separating ternary mixtures with small concentration on 
intermediate in the feed', Ind. Eng. Hem. Process Des. Dev.» 24 
(2), 500 (1985). 

Domenech S., Pibouleau L. and Floquet P.," Denombrement de cascades de 
colonnes de rectification complexes", Chem. Eng. J., 45,149 
(1991). 

Elaahi A. and Luyben W. L.," Alteernative distillation configurations for 
energy conservation in four-component separation', Ind. Eng. 
Hem. Process Des. Dev., 22 (i), 80 (1983). 

Flouquet P., Pibouleau L. and Domenech S., 'Agencement de colonnes de 
rectification complexes', Chem. Eng. J., 47, 319 (1991), 

Guilbaud G. Th.," Les Partages en nombres entiers", Quadrature, 4, 41 (1990) 
Petlyuk F. B., Platonov V. M. and Slaviniskii D. M.t Thermodynarnically 

optimal method for separating multicomponent mixtures', Int. 
Chem. Eng., 5(3), 555 (1965) 

Shoaei M. and Sommerfeld J. T, "Catalan numbers in process synthesis", A. I 
Ch. E., 32 (11), 1931 (1986). 

Press W. H., Fiannery B. P., Teukolsky S. A. and Vetterling W. T., 
"Numerical recipes. The art of scientific computing", 
Cambridge University Press (1988) 

Thompson R. W. and King C. J., "Systematic synthesis of separation 
schemes", A.L Ch. E. J., 8, 941 (1972). 

Wahl P. E. and Lien K. M,, "Combinatorial aspects of sharp separation 
systems synthesis", A. I Ch. E., 36 (10), 1601 (1990). 

TESCE, Vol. 33, No. 2 -71- April 2007 


