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Abstract 

This paper presents an intelligent approach based on artificial neural networks 
(ANN) to obtain numerical solutions of the mathematical models of dynamical 
system, that are represented by ordinary differentia! equations (ODEs) with initial 
value representing a sequencing batch reactor. The intelligent approach consists of 
two phases. The first phase focuses on developing a simulation model of die given 
ODEs for obtaining an approximate solution. The second phase concentrated on 
linking the simulation mode] with a feedforward ANN containing adjustable 
parameters (weights), such that the output of the first phase is used as a target of the 
ANN. Hence, the applicability of this approach ranges from single ordinary 
differential equations (ODEs), to system of coupled ODEs. The intelligent approach 
is applied to solve a chemical application problem. 

^Keywords: Initial value problem; Artificial neural networks; Simulation; 
Backpropagation algorithm; Sequencing batch reactor. 

1. Introduction 

Most problems in science and engineering are represented by a set of differential 

equations (DEs) through the process of mathematical modeling. Analytical solutions 

of the developed mathematical models based on physical laws may not be always 

possible. In addition, analytical methods are generally inadequate to obtain closed 

form solutions of the considered problems. The most used numerical methods 

developed for solving DEs include finite difference method, finite element method 

(FEM), finite volume method and boundary element method (BEM) [1-12]. 
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Enormous progress in the field of numerical solutions of ordinary differential 

equations (ODEs) has been developed in the last three decades. However, these 

methods are still based on some discretization of the domain of analysis into a 

number of finite elements. 

Artificial neural networks are considered as approximation schemes where the 

input data for the design of a network consists of only a set of unstructured discrete 

data points. Different strategies were developed for solving ordinary differential 

equations (ODEs) using feedforward artificial neural networks (ANNs) [13-18], 

The remainder of this paper is organized as follows: In sections 2,3, we introduce the 

proposed feedforward ANN structure and backpropagation training algorithm 

scheme. In sections 4,5, we introduce our problem definition and solution 

methodology. In section 6, the obtained results are also graphically presented and 

some conclusive remarks are given. All computer programs developed in this paper 

have been performed by using MATLAB, Finally, section 7, concludes the paper. 

2. The feedforward artificial neural network 

A typical feedforward neural network (FFNN) consists of a number of layers of 

neural units. Every neural unit in a layer is interconnected to every unit in the 

adjacent layers.The strength of every interconnection is characterized by its weight. 

Information propagates from the input layer (first layer) to the output layer (last 

layer). Each neural unit weights the input it receives from the units in the previous 

layer using the appropriate interconnection weight. Subsequently, the sum of the 

inputs weighted is filtered through a transfer function to produce an output from the 

unit. The outputs from the output layer represent the final prediction of the neural 

network Figure (I). Training of the neural network is done by systemically adjusting 

the interconnection weights to minimize the error such that the predicated output 

from the network is as close as possible to the desired output. Several methods are 

used to minimize the error; for example, it is possible to use either steepest descent 

(i.e. die back propagation algorithm or any of its variants), or conjugate gradient 

method. 
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Fig. 1. Neural network with one hidden layer 

3. Learning of artificial neural networks 

Learning of ANN is an algorithm for adjusting the network weights w tJ to 
Minimize the difference between the actual outputs Oj and the desired output T} 

-We-can-define an error function to quantify this difference 

(i) 
p J 

This is known as the total squared error summed over all output unit j and all 

training patterns p. 

The aim of learning is to minimize this error by adjusting the weight WfJ .Typically 

we make a series of small adjustments to the weights WtJ —» Wy+AW^ until the 

error E$V&)i& 'small enough' 

To minimize the error function (1) we use a series of gradient decent weight updates 

SEW,) 
&Wlt=-v dW 

(2) 
id 

If the transfer function for the output neuron i s / (x), and the activations of the 

previous layer of neurons arez, 3 then the output are Oj = / ^ZjWg and 

LWkl=-r) 
dW kl 

\?:m-f\?>> 
p J 

(3) 

After repeated application of the chain rule, and some tidying up, we end up with a 

very simple weight update equation: 
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A^w »i7Z(7-| - 0 , ) / ' ( Z ^ } ^ - (4) 
We use a differentiate activation function such as sigmoid function in the hidden 

layer a(z ) = .Due to the properties of the sigmoid derivative, the general 

weight update in equation (4) simplifies so that it only contain neuron activations and 

no derivative 

AWkl =77^(7,^)0^-0^, (5) 
P 

Equation (5) is known as the generalized Delta Rule for training for feedforward 
ANN with sigmoid activation function. 
4. Sequencing batch reactor 

Sequencing batch reactors (SBR) are basically fill-and-draw systems: wastewater 
is added and simultaneously treated during the fill period, it is treated during the react 
period , allowed to settle during the settle period and at the end of the cycle, the 
effluent is withdrawn during the withdraw period . A great deal of research effort has 
been spent on modeling the suspended-growth processes. Models, which are 
specifically oriented to SBR, are available in the literature [19], [20]. These models 
were able to predict the system performance with various degrees of success. 
A model was developed to describe the performance of SBR is a system of ordinary 
differential equations. 

The model presented here is structured upon four processes: substrate-associated 
growth process, product-associated growth process, hydrolysis process, and decay 
process. Three soluble components are considered in the model: soluble substrate,Ss, 

soluble intermediate product, Ps (both materials are considered degradable, however 

the rate of Ps degradation is slower than the rate of degradation ofSr), and soluble 

inert material. Three particiilate materials are presented : particiilate organics, X s, 

active biomass, Xa, and inert particiilate organics, Xt. This model is developed for 

completely aerobic systems and does not include the nitrification and denitrification 
processes. 
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In the model all biomass [X s ,Xa,X.) concentrations are based on total volume while 

two substrates and intermediate product (Ss,Sf ,PS) concentrations are based on bulk 

liquid volume. The distinction between bulk liquid volume and total volume is very 
essential as the concentration of solids in such systems is significant, thus the 
difference between the two volumes. This distinction is often neglected when 
modeling such systems and therefore, erroneous results may occur. The relationship 
between the bulk volume (K6)and the total volume (F,) is given by the following 
equation: 

b „ 
dt =2 

r x ^ 
1 . 0 - ^ V J 

The model is presented in the following system of ODEs 

Particulate organics, Xs: 

*L-=Al.{X,-Xt) + (l-f,)R4-R, 

Active biomass (Xa): 

dX 
dt s- = Al.(X<f-Xa) + Rl + R2-R4 

Inert particulate organics (X,): 

^J-=Av{Xlf-Xt)+fpJlA 

Soluble substrate (S.): 

R, dS, _A c _ -pst 

Soluble intermediate product (Pt): 

dP. drA^+i R. 
yh 

pRx-^+(}-a)R3 -pj>, 

Soluble inert substrate (5,): 

dS, a 
dt 5 ,f A2

 3 H ' 
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Where 

MAS S-) R2=J^-Xa 

7? - kh-y( JXa) y n _ n y 

^WJxTnK a ' *4""AJfu 

= - g l 
Mm. Mma{+Ps 

Xla=Xs+Xa+Xt , COD=St+P,+S, 

\dt }y,A2) 

Ax=%-; A2 = 1 .0 -^ - ; A 3 = 1 . 0 - ^ L ; A 4 = ^ ; AS=>M« 

The values of the various parameters used in this model are obtained from the 

literature and are listed in Table (1). 

Table 1. Parameters used in the model. 
Parameter Value Parameter Value 

PH 0.052 f, 0.08 

£, 20 K
P 

500 

K* 0.0916 * , 0.15 

yP 0.25 y,, 0.5 

r*m 0.4 a 0.025 

« £ 60 
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5. Solution methodology 
In this paper, an intelligent methodology is presented to solve ODEs that relies on 

the function approximation capabilities of feedforward ANNs. The intelligent 

methodology consists of two phases. The first phase focuses on developing a 

simulation model of the given ODEs for obtaining an approximate solution. The 

second phase concentrated on linking the simulation model with a feedforward ANN 

with adjustable parameters (weights) such that the first phase is used as a target of the 

ANN to train it. Hence, we obtain ANN representing the solution of ODE. This 

feedforward ANN is with one hidden layer varying the neuron number in the hidden 

layer according to complexity of _the. considered problem. The ANN having an 

appropriate architecture that has been trained with backpropagation algorithm. The 

method uses feedforward neural networks with one hidden layer in which varies the 

neuron number as a basic approximation element, whose weights and biases are 

adjusted to minimize an error function. Optimization techniques requiring the 

calculation of the gradient of the selected error function w.r.t. the network parameter 

are used to train the network. 

6, Computational analysis: 
The initial value problem given by the equations (2)-(7) is sloved by Runge-Kutta 

method for multiple ordinary differential equations, then solved by proposed 

approach and compare them at different cases of fill and reaction time. 

In the first phase of propoed approch we constnict a simulation model of the given 

system of ODEs as shown in Figure(2). 
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Fig. 2. Simulation of the sequencing batch reactor 

Then we design a feedforward ANN that represent the solution of the system for 

different fill and reaction time ,all cases with COD loading 1580 mg/I. 

Figures (3, 4, 5, 6, 7, 8) represent the solution comparison of the system by using 

Runge-Kutta method for multiple ODEs and neural solution, and we show that they 

coincide with each other. 
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Fig. 3. Comparison of model solution with Dgear and ANN for 
COD concentration vs time(Fill time=l h and react time =6 h) 
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Fig. 4. Comparison of model solution with Dgear and ANN for 

total organic biomass X vs time(fill time -\\\ and react time=6h) 
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Fig. 5. Comparison of model solution with Dgear and ANN for 
COD concentration vs. time (fill time=2 h and react time = 6 h) 
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Fig. 6. Comparison of model solution with Dgear and ANN for 

total organic bimassA' vs. time(fill time =2 h and react time=6 h) 
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Fig. 7. Comparison of model solution with Dgear and ANN for 

COD concentration vs time(fill time =3 h and react time=6 h) 
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Fig. 8. Comparison of model solution with Dgear and ANN for 

total organic bimassX vs tlme(fill time =3 h and react time=6 h) 
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7. Conclusion 

The dynamic systems are generally represented by either ODEs or PDEs.That is 

why, we propose an alternative method using feedforward ANNs to solve a system 

of ordinary differential equations (sequencing batch reactor). To test accuracy of this 

method, the problems are also solved by either Runge-Kutta or analytical 

methods.Then, the obtained results are graphically presented and compared with each 

other. Figures show that the results are in very close agreement. Further more^we test 

the method for training point and outside the training points to see approximate 

capability of the method for ODEs. 

The architecture of the proposed by ANN consists of one hidden layer varying its 

neuron number to deal with highly non-linear problems. We successfully apply this 

method to problems whose dynamics are represented by ODEs (sequencing batch 

reactor). 

Consequently, this method can be used for a wide class of linear and non-linear 

ODEs.Therefore, it is general and easy to apply for numerical solutions of dynamic 

problems. 
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