An Intelligent Approach Based on Artificial Neural Network
(ANN}) to Solve Initial Value Problem

Abd El-sameea M.', Zaki $.2, Abd El-wahed W.F2 and Ibrabim G
1,2,4 Basic Engincering Sciences Dept — Faculty of Engincering — Meunoutia Univ.
3- Fucuity of Computer Scicnces - Menoufia Univ,

** sanual_i_m_af@yahon.com

Abstract

This paper presents an intelligent approach based on artificial neural networks
(ANN) to obtain numerical solutions of the mathematical models of dynamical
system, that are represented by ordinary differential equations (ODEs) with initial
value. The intelligent approach consists of two phases. The [irst phase foeuses on
developing a simulation model of the given ODE for oblaining an approximale
solution. The second phase concentrated on linking the simulation model with «
feedforward ANN containing adjustable parameters (weights) . Such thatl the outpul
of the first phase is used as a target of the ANN to train it. HMence we abtain ANN
represent the solution of ODE. The applicability of this approach ranges [rom single
ordinary differential equations (ODESs) , to a system of coupled ODEs. The method s
illustrated by solving a variety of problems and present comparative sludy with the
solution obtained by classical methods.

Keywords: Initial value problem; Artificial neural networks; Simulation;

Backpropagation algorithm.
1. Introduction

Most problems in science and engineering are represented by a set of differential
equations (DEs) through the process of mathematical modeling. Analytic solutions of
the developed mathematical models based on physical laws may not be always
possible. In addition, analytical methods are generally inadequate to obtain closed
form solutions of the considered problems. The most used numerical methods
G

TESCE, Vel.31, No.2 April, 2005

developed for selving DEs include finite difference method, finite element method
(FEM), and boundary element method (BEM) [1-12]. Enormous progress in the field
of numerical solutions of ordinary differential equations {ODEs) has been developed
in the last three decades. However, these methods still based on some discretization
of the domain of analysis into a number of finite elements.

Artificial neural networks is considered as an approximation scheme where the
input data for the design of a network consists of only a set of unstructured discrete
data points. Different strategies were developed for solving ordinary differential
equations (ODEs) by using feedforward artificial neural networks (ANNs) [13-18].

Some of them produce a solution in the form of an array that contain the value of
the solution at a selected group of points. Other used basis function to represent the
solution in the analytic form and transform original DE to a system as algebraic
equations. Many research works in solving (DEs) using ANNs are restricted to the
case of solving the system of algebraic equations which result from the discretization
of the demain. The solution of a linear system of equations is mapped into the
archilecture of Hopficld neural network. The minimization of the networks energy
function provides the sotution to the system of equations[19], [20], [21].

Anolher approach to the solution of (DEs) based on the fact that certain types of
splines, for inslance S, -splines, cab be derived by superposition of piecewise linear
activation function [22], [23]. The solution of differential equation with intial value

using f — splines as basis functions, can be obtained by solving a system of linear or

nonlinear equations in order to determine the coefficient of splines. Such a solution
form is mapped direclly on architecture of feedforward neural network by replacing
each splinc with the sum of piccewise linear activation functions that correspond to
the hidden unit. This method considers local basis-functions and in general requires
many splines (and consequently network parameters)to yield accurate solutions.In
other study [16], the numerical solutions of linear ODEs have been obtained by using
multiquadratic radial basis function networks (RBFNs). The mentioned methods with
different networks archilectures give good results for specific class of ODEs

However, none of them has produced general closed form solution. For the closed

(50)
S~

form solution of DEs, Lagaris et al. {17] have, first, proposed and given comparisons
with solutions obtained from Galerkin FEM to present performance of their method.
Then, the same authors [18] have developed their inethod using ANN s with RBFNs.

In this paper, an intelligent methodology is developed to solve ODEs that relics
on the function approximation capabilities of feedforward ANNs. The intelligent
methodology consists of two phases. The first phase focuses on developing a
simulation model of the given ODEs for obtaining an approximate solution. The
second phase concentrated on linking the simulation model with a feedforward ANN
witli adjustable parameters (weights) such that the first phase is used as a target of
the ANN to tram it. Hence we obtain ANN represent the solution of QDE. This
feedforward ANN is with one hidden layer varying the neuron number in the hidden
layer according to complexity of the considered problem. The ANN has an
appropriate architecture that is traimed with backpropagation algorithm. This method
uses feedforward neural networks with one hidden layer in which varics the neuron
number as a basic approximation element, whose weights and biases are adjusted (o
minimize an error function. Optimization techniques requiring the caleulation of the
gradient of the selected crror function w.r.t. the network parameter are used (o train
the network.

The use of simulation and ANN to solve the ODE has many attractive fealures
such as;

1- The solution presents a very good gencralization properties.

2- Less number of parameters are required than the other solution techniques.

Therefore, it requires low memory space.

3- The proposed solution method is capable of applying both ODEs and PDIs.
The remainder of this paper is organized as follows; In section 2, we introduce the
prposed feedforward ANN structure and backpropagation training algorithin
scheme.In section 3, we proposed solutions for different example of ODEs. The
obtained results are also graphically presented and some conclusive remarks are give,
All computer programs developed in this paper have becen performed by using

MATLAB. Finally, section 4, concludes the paper.

o

2. The fecdforward artificial neural network

A typical feedforward neural network (FFNN) consists of a number of layers of
neural units, Every neural unit in a layer is interconnected fo every unit in the
adjacent layers. The strength of every interconnection is characterized by its weight,
Information propagates from the input layer (first layer) to the output layer (last
fayer). Each neural unit weights the input it receives from the units in the previous
Jayer using the appropriate inlerconnection weight. Subsequently, the sum of the
inpuls weighted is filtered through a transfer function to produce an output from the
unit . The oulpuls from the output layer represent the final prediction of the neural
network Figure (1). Training of the neural network is done by systemically adjusting
the interconnection weights to minimize the error such that the predicated output
from the network is as close as possible to the desired output. Several methods are
used to minimize the error; for example, it is possible to use either steepest descent
(i.¢. the back propagation algorithm or any of its variants), or conjugate gradient

method .

Fig.1. Neural network with one hidden layer

2.1 Learning of artificial neural networks

Learning of ANN is an algorithm for adjusting the network weights w, to
minimize the difference between the actual outputs O, and the desired output 7,

We can define an error function to quantify this difference

E(ny):%ZZ(TJ -0,) ()

(52)
N

TESCE, Vol.31, No.2 April, 2003

This is known as the total squared ervor summed over all output umt jand all

trawing patterns 7.

The aim of learning is minimizing this error by adjusting the weight ¥ Typically,
we make a ;eries of small adjustments to the weights W, — W, + AW umil the
error I (¥)is ‘small enough’

To minimize the error function (1) we use a series of gradient decent weight updates
BEW)
—""

AWy =~ :
ol

(2)

1T the transfer function for the output neuron is / (x), and the activations ol the

previous layer of neurons are z, , then the output are O, =/ [zz’,w y);m(i

i

M'thz_’iaw EZZ{ '—.f[zszgf)) (3}
I 1

I

After repeated application of the chain rule, and some tidying up, we end up with 2

very simple weight update equation:
A;’yk! = "EZ(Y‘-’ _(),P)rf !(ZZJ;W nf)'Z& {4)
p n
We use a differentiable activation function such as sigmoid function in the hidden

Due to the properties of the sigmoid derivative, the general

layer o(z)= —.
l+e™

weight update in equation (4) simplifies so that it only contain neuron activations and

no derivative

AW“—nZ(~0)0,(1-0)z2, (5)

Equation (5) is known as the generalized Delta Rule for training for feedforward
ANN with sigmoid activation function.
3. Solution of differential equations

In this section, we consider a solution of some problem modeled by ODLCs to

illustrate the efficiency of the propesed method. In all case we use a fecdforward

(s)

_,/
TESCE, Vol.31, No.2 April, 2005

ANN with three layers, having sigmoid activation function in the lidden layer but
linear activation function in the outout layer. The ANN is trained by using
backpropagation algorithms. To test accuracies of this method,the examples are also
solved by either Runge-Kutta or analytical methods. Then, the obtained results are
graphically presented and compared with each other. Further more,we test the methed
for training point and outside the training points to see approximnate capability of the
method for ODEs,

3.1 Solulion of first-order differential equations(ODES)

To illustrate the method, we consider the first-order OED as follows:

ff“-‘-L:Jc ~x*, 1€[01]
¢t
x{0)=05

In the first phase we construct a simulation model of the given ODE as shown in the

Figure (2).

W

L (i
[Inlegrator To Wodspace

b

Praduct

Fig. 2. ODE simulation (first phase)
The second phasc is the design and (rain a feedforward ANN that have the following
steps:
1- Initialize the ANN parameters(weights and biases).
2- Define the parameters associated with the algorthm like error goal,learning
rate, maximum number of epochs(iterations),etc.
3- Call the teaching algorithm (output of the simulation phase) to train a
feedtorward ANN.

<>

TESCE, Vol.31, No.2 April, 2005

The network output and the solution obtained from Runge-Kutta method are
shown in Figure (3). we note that the solution curves obtaimed from the both methods
almost coincide with each other.Moreover, we can {ind from the network the solution

points of the ODE in the outside of the training interval.

T ? ' T T T -
G MNeural e CAETEY
0.95 | o Exact M{ﬂ‘k i
0.9} .e‘f'ﬂmo
o
685 goo")
5]
08 o J
e o
5 &
= 075 A
b2
1 1 1 1 4 1 \
0.3 1 1.6 2 2.5 3 35 4

Fig. 3. Solution curves of Ist order ODE obtained with ANN and Runge-Kutta

3.2 Solution of second-order differential equations(ODESy)

In this ODE ,we consider mass-damper-spring system whose mathematical inodel is

2
md al -i-cdi-t—kx =0
el
where x (0} =1, 61};’50) =0 with t €[0,2]
m=c=k=1

put x=x, ,X=x,

X, =x
Then ,i g

X,==X,—X,

The simulation model of this second ODE is shown in the figure (4)

<D
S

TESCE, Veol.3%, No.2 April, 2005

P :— > %
lntegratort To Wolkcpace
ki I
s
Inlegrator

Fig. 4. Simulation of the above 2™ order ODE

Similar as 1™ order ODE we design ANN to present the solution of above ODE.

The network output and the solution obtained from Runge-Kutta method are shown
in the Figure (5), we note that the solution curves obtained from the both methods
almost coincide with each other.Moreover,we can find from the network the solution

points of the ODI{ in the outside of the training interval

N T T T T L —— T ¥

T
O NMoural

1:5‘10999%% v Runge-kulta
08| 99%

o o |

H DB X .4

Bl Tesnng

IFig. 5. Solution curves of 2™ order ODE obtained with ANN and Runge-Kutta

3.3 Solution for a system of ordinary differential equations

X, =X,
Let _)
X,=x,(l-x,")-x,
Where (0= ,x(0)=1

The stmulation model of this system of QDE is shown in Figure (7)
(36)
NS

TESCE. Vol31. No.2 April, 2005

Froduct?

)4..“..
w
o 5

& o
(i : BN
———® 3

g Te Wodapaze
Froductd -
integralaz
b3
Lanstant
i » 2
F
Yo \Wadspacet
tntegrolest

Frz 7. Sumuiation of sbove system of GDE

The ahove system of ODE with two output, then the designed ANN with two neuron
wn the output fayer. In the hidden layer we use 13 neurons fo ensure the owtput of the

ANHN coincide with numerical solution of the system as shown in Figure (8).

k3 ™ ™ T T ¥

RE S =
T wEeetat
e 3R Keata
-} — 20 RwgeitlE

Wt

x1.x2

Fig. 8.Solution curves of above system of ODE obtained with ANN and Runge-Kutta

(51)
SN

TESCE, Vol.31, No.2 April, 2005

4. Conclusion

The dynamic systems are generally represented by either ODEs or PDEs. That is
why we propose an alternative method using feedforward ANNs to solve ODEs. To
test accuracy of this method, the problems are also solved by either Runge-Kutta or
analytical methods. Then, the obtained results are graphically presented and
compared with cach other. Figures show that the results are in very close agreement.
Further more, we test the method for training point and outside the training points to
sce approximate capability of the method for ODEs .

The architecture of the proposed ANN consists of one hidden layer varying its
neuron number to deal with highly non-linear problems. We successfully apply this
meihod 1o problems whose dynamics are represented by ODEs.

Consequently, this method can be used for wide class of linear and non-linear
ODIEs, Therefore, it is general and easy to apply for numerical solutions of dynamic

problems.

References

[11P.M. Limz;, M.P. Carpenlier, lterative methods for a singular boundary-value problem, J.
Comput, Appl. Math. 111 {1999) 173-186.

[2] . Guogiang, W. Jiong, K, Hayami, X. Yuesheng, Correction method and extrapolation method
[er singular two-point baundary value problems, J. Comput. Appl. Math. 126 (2000) 145157,

[3] D. Kincaid, W. Cheney, Numerical Analysis, Brooks/Cole, Monterey, CA, 1991,

[4} K.S. Yee, Numerical selution of initial boundary value problems involving Maxwell's equation
in isotrapic media, 1EEE Trans. Antennas Propagation AP-14 (1996) 302-307.

[5] P. Hunter, A. Pullan, FEM/BEM Notes, Department of Engineering Science, The Universily
ol Auckland, New Zealand, 1997,

[6] M.A. Kolbehdari, M.S. Nakhla, M.N.O. Sadiku, Hybrid mode! of scatteringfrom eccentrically
nested diclectiic cylinders, J. Franklin Inst. 225B (1999) 43-51.

[7] G. Jacobsohn, A discrete Taylor scries method for the solution of two-point boundary-value
problems, J. Franklin Inst. 338 (2001) 61-68.

[8] Y. Guoyou, W.J. Mansur,] A.M. Carrer, L. Gong, Stability of Galerkin and collocation time
domain boundary element methods as apolied to the scalar wave equation, Comput. Struct, 74

(ss)

TESCE, Vol31, No.2 S Anril. 2005

(2000} 495-506.

[9] L. Meirovitch, T.J. Stemple, A new approach to the modeling of distributed structures for
control, J. Franklin Instit. 338 (2001) 241-254.

[10] W-S. Lee, Y-H. Ko, C-C. Ji, A study of an inverse method for the estimation of impulsive heat
flux, J.Frankiin Inst. 337 (2000) 661-671.

[11]J. Kouatchou, Parallel implementation of a high-order implicit collocation method tor the heat
equation, Math. Comput. Simul. 54 (2001) 509-519.

(12] B. Bialecki, G. Fairweather, Orthogonal spline collocation methods for partial ditlerential
equations , J. Comput. Appl. Math. 128 (2001) 55-82.

[13] T. Nguyen-Thien, T. Tran-Cong, Approximation of finctions and their derivatives: a neural
network implementation with applications, Appl. Math. Modell. 23 (1999} 687--704.

[14] S. He, K. Reif, R. Unbehauen, Multilayer neural networks for solving a class of partial
differential equations, Neural Networks 13 (2000) 385~396.

[15] C.L. Karr, 1. Yakushin, K. Nicolasi, Solving inverse initial-value, boundary-value problems via
genetic algorithm, Eng. Appl. Artif. Intell. {3 (2000) 625-633.

[16] N. Mai-Duy, T. Tran-Cong, Nwnerical sclution of differential cquations using multiGuadric
radial basis finction networks, Neural Networks 14 (2001) 185-199,

[17} LE. Lagaris, A. Likas, D.1. Fotiadis, Artificial neural networks for solving ordinary and partial
differential equations, 1EEE Trans, Neural Netwarks 9 (5) (1998) 987— 1600,

18) 1L.E. Lagaris, A. Likas, D.G. Papageorgio, Neural-network methods for houndary value
g ! b4
problems with irregular boundaries, IEEE Trans. Neural Networks |1 (5) (2000) 104 {--J049.

[19F H. Lee and 1. Kang, “Neural algorithns for solving differential equalions,” L Compit. Phys.
vol. 91, pp. 110-117, 1990.

[20]) L. Wang and J. M. Mendel, “Structured trainable networks for matrix algebra,” JREE It Joiot
Conf. Neural Networks, vol. 2, pp. 125-128,1990.

[21]R. Yentis and M. E. Zaghoul, “VLSI implementation of locally connected neural network for

solving partia! differential equations,” JEEE Trans. Circuits Sysi. I, vol. 43, no. 8, pp. 687—
690, 1996,

[22] A.). Meade, Jr., and A. A. Fernandez, “The numerical solution of lincar ordinary differential
equations by feedforward neural networks,” Math. Comput. Modeling, vol. 19, no. 12, pp. 1-
25, 1994,

[23], “Solution of nonlinear ordinary differentia} equations by feedforward neural networks,” Muth.
Comput. Modeling, vol. 20, no. 9, pp.19-44, 1994,

[24] . W. Hines, Fuzzy and Neural Approaches in Engineering MATLAB Supplement, Prentice-

Hall, Englewoed Cliffs, NJ, 1997,
(59).
,,/

TCOT A1 2T ANa 1 Anpril, 2005

