
An Intelligent Approach Based on Artificial Neural Network

(ANN) to Solve Initial Value Problem
Abd EL-samcca M.1, Zaki S.2 > Abd El-wahcd YV.F,3 and Ibrahim G/'"

1,2,4 Basic Eiiginccriii" Sciences Dcp t - Vacuity of Engineering- Mcnouna Ciriv.
3- Faculty of Computer Sciences - Mcuoufia Uniw

** gnniitM_ni_n(ol>i)hon.coiii

Abst rac t

This paper presents an intelligent approach based on artificial neural networks

(ANN) to obtain numerical solutions of the mathematical models of dynamical

system, that are represented by ordinary differential equations (ODEs) wilh initial

value. The intelligent approach consists of two phases. The first phase focuses on

developing a simulation model of the given ODE for obtaining an approximate

solution. The second phase concentrated on linking the simulation model with a

feedforward ANN containing adjustable parameters (weights) . Such (hat the outpul

of the first phase is used as a target of the ANN to train it. Hence we obtain ANN

represent the solution of ODE. The applicability of this approach ranges from single

ordinary differential equations (ODEs) , to a system of coupled ODEs. The method is

illustrated by solving a variety of problems and present comparative study with (he

solution obtained by classical methods.

Keywords: Initial value problem; Artificial neural networks; Simulation;

Backpropagation algorithm.

1. Introduction

Most problems in science and engineering are represented by a set of differential

equations (DEs) tlirough the process of mathematical modeling. Analytic solutions of

die developed mathematical models based on physical laws may not be always

possible. In addition, analytical methods are generally inadequate to obtain closed

form solutions of the considered problems. The most used numerical methods

(V)
TESCE, VoL3J, No.2 April, 2005

developed for solving DEs include finite difference method, finite element method

(FEM), and boundary element method (BEM) [1-12]. Enormous progress in the field

of numerical solutions of ordinary differential equations (ODEs) has been developed

in the last three decades. However, these methods still based on some discretization

of the domain of analysis into a number of finite elements.

Artificial neural networks is considered as an approximation scheme where the

input data for the design of a network consists of only a set of unstructured discrete

data points. Different strategies were developed for solving ordinary differential

equations (ODEs) by using feedforward artificial neural networks (ANNs) [13-18].

Some of them produce a solution in the form of an array that contain the value of

the solution at a selected group of points. Other used basis function to represent the

solution in the analytic form and transform original DE to a system as algebraic

equations. Many research works in solving (DEs) using ANNs are restricted to the

case of solving the system of algebraic equations which result from the discretization

of (he domain. The solution of a linear system of equations is mapped into the

architecture of Hopficld neural network, The minimization of the networks energy

function provides the solution to the system of equations[19], [20], [21].

Another approach to the solution of (DEs) based on the fact that certain types of

splines, for instance /?,-splines, cab be derived by superposition of piecewise linear

activation function [22], [23]. The solution of differential equation with intial value

using /?, - splines as basis functions, can be obtained by solving a system of linear or

nonlinear equations in order to determine the coefficient of splines. Such a solution

form is mapped directly on architecture of feedforward neural network by replacing

each spline with the sum of piecewise linear activation functions that correspond to

the hidden unit. This method considers local basis-functions and in general requires

many splines (and consequently network parameters)to yield accurate solutions.In

other study [16], the numerical solutions of linear ODEs have been obtained by using

multiquadralic radial basis function networks (RBFNs). The mentioned methods with

different networks architectures give good results for specific class of ODEs

However, none of them has produced general closed forcn solution. For the closed

form solution of DEs, Lagan's et al. [17] have, first, proposed and given comparisons

with solutions obtained from Galerkin FEM to present performance of their method.

Then, the same authors [18] have developed their method using ANN s with RBFNs.

In this paper, an intelligent methodology is developed to solve ODEs that relies

on the function approximation capabilities of feedforward ANNs. The intelligent

methodology consists of two phases. The first phase focuses on developing a

simulation model of the given ODEs for obtaining an approximate solution. The

second phase concentrated on Jinking the simulation model with a fcedibavard ANN

with adjustable parameters (weights) such that the first phase is used as a target of

the ANN to train it Hence we obtain ANN represent the solution of ODE, This

feedforward ANN is with one hidden layer varying the neuron number in the hidden

layer according to complexity of the considered problem. The ANN has an

appropriate architecture that is trained with backpropagation algorithm. This method

uses feedforward neural networks with one hidden layer in which varies the neuron

number as a basic approximation element, whose weights and biases are adjusted to

minimize an error function. Optimization techniques requiring tiic calculation of the

gradient of the selected error function w.r.t. the network parameter are used to train

the network.

The use of simulation and ANN to solve the ODE has many attractive features

such as:

1- The solution presents a very good generalization properties.

2- Less number of parameters are required than the other solution techniques.

Therefore, it requires low memory space.

3- The proposed solution method is capable of applying both ODEs and PDEs.

The remainder of this paper is organized as follows: In section 2, we introduce the

prposed feedforward ANN structure and backpropagation training algorithm

schemeJn section 3, we proposed solutions for different example of ODEs. The

obtained results are also graphically presented and some conclusive remarks are give,

All computer programs developed in this paper have been performed by using

MATLAB. Finally, section 4, concludes the paper.

% The feedforward artificial neural network
A typical feedforward neural network (FFNN) consists of a number of layers of

neura! units. Every neural unit in a layer is interconnected to every unit in the

adjacent JayersThe strength of every interconnection is characterized by its weight.

Information propagates from the input layer (first layer) to the output layer (last

layer). Each neural unit weights the input it receives from the units in the previous

layer using the appropriate interconnection weight. Subsequently, the sum of the

inputs weighted is filtered through a transfer function to produce an output from the

unit . The outputs from the output layer represent the final prediction of the neural

network Figure (1). Training of the neural network is done by systemically adjusting

the interconnection weights to minimize the error such that the predicated output

from the network is as close as possible to the desired output. Several methods are

used to minimize the error; for example, it is possible to use either steepest descent

(i.e. the back propagation algorithm or any of its variants), or conjugate gradient

method .

Fig. 1. Neural network with one hidden layer

2.1 Learning of artificial neural networks

Learning of ANN is an algorithm for adjusting the network weights w,. to

minimize the difference between the actual outputs (9, and the desired output T

We can define an error function to quantify this difference

L V J

o
TESCE, Vol.31, No.2 April, 2005

This is known as the total squared error summed over all output unit ,/ and all

training patterns p.

The aim of learning is minimizing this error by adjusting the weight IVtf .Typically,

we make a series of small adjustments to the weights Wti —> Wy-f Aft7. until (he

error EQVfj)is 'small enough'

To minimize the error function (3) we use a series of gradient decent weight updates

If the transfer function for the output neuron i s / {x), and the activations of the

previous layer of neurons are z t, then the output are Oj = / $^ ,w tJ ana

tWkt=-Tl 8 w* (3)

After repeated application of the chain rule, and some tidying npy we end up with a

very simple weight update equation:

We use a differentiablc activation function such as sig/noid firnction in the bidden

layer <r(z) = — - — . Due to the properties of the sigmoid derivative, (he general

weight update in equation (4) simplifies so that it only contain neuron activations and

no derivative

p

Equation (5) is known as the generalized Delta Rule for training for feedforward

ANN with sigmoid activation function.

3. Solution of differential equations

In this section, we consider a solution of some problem modeled by ODEs to

illustrate the efficiency of the proposed method. In all case we VSQ a feedforward

53
TESCE, Vol.31, No.2 April, 2005

ANN with three layers, having sigmoid activation function in the hidden layer but

linear activation function in the outout layer. The ANN is trained by using

backpropagation algorithms. To test accuracies of this method,the examples are also

solved by either Runge-Kutta or analytical methods. Then, the obtained results are

graphically presented and compared with each other. Further more,we test the method

for training point and outside the training points to see approximate capability of the

method for ODEs.

3J Solution offirsi-order differential equaiions(ODEs)

To illustrate the method, we consider the first-order OED as follows:

^ U j C - * 2 , /6[0,1]
dt
x(0) = 0.5

In the first phase we construct a simulation model of the given ODE as shown in the

Figure (2).

^ Integrator To Workspace

Piaduct

Fig. 2. ODE simulation (first phase)

The second phase is (he design and train a feedforward ANN that have the following

steps:

1- Initialize the ANN parameters(weights and biases).

2- Define the parameters associated with the algorthm like error goal,learning

rate, maximum number of epochs(iterations),etc.

3- Call the teaching algorithm (output of the simulation phase) to train a

feedforward ANN.

TESCE, Vol.31, No.2
54

April, 2005

The network output and the solution obtained from Runge-Kutta method are

shown in Figiue (3), we note that the solution curves obtained from the both methods

abnost coincide with each other.Moreovcr, we can find from the network the solution

points of the ODE in the outside of the training interval.

* * * * *
^ V * * ^

0 0.5 1
j-%foiiialrifo'-; [

Fig. 3. Solution curves of 1st order ODE obtained with ANN nrul Ruiigc-KuUa

3.2 Solution of second-order differential eqnationsfODEs)

In this ODE ,we consider mass-damper-spring system whose mathematical model is

d2x dx
m dt dt + lcx =0

where x(0) = J, ^ U £ = 0 with t e [0,2]
dt

m=c=k=l

put x = xx ,x =x2

Then

The simulation model of this second ODE is shown in the figure (4)

xk=x2

X2
 = ~X l — X 2

TESCE,VoJ.3!sNo.2
55

April, 2005

1
s

h X - r
1
s

X

Integrate r1 " o WoiiGpace
* . . . I — -

Integrate f

fid Fig. 4. Simulation of the above 2" order ODE

Similar as lat order ODE we design ANN to present the solution of above ODE.

The network output and the solution obtained from Runge-Kutta method are shown

in the Figure (5), we note that the solution curves obtained from the both methods

almost coincide witli each othei\Moreover,we can find from the network the solution

points of the ODK in the outside of the training interval

O Noun-il
Rungu-kulla

G D.2 0.4 0.6 0.0
Slllft \t,tnrtj I

t 1.2 1.4 1.6 IB 2

Fig. 5. Solution curves of 2m! order ODE obtained with ANN and Runge-Kutta

3.3 Solution for a system of ordinary differential equations

Let x,=x2

X2=Xi{l-X*)-X

Where *,(()) =] ,x2(0) = I

The simulation model of (his system of ODE is shown in Figure (7)

TKSCK.VoUI.Nn.2
56

April, 2005

FnnfuTtt

C^naianfc

To Wafapae*i

Fig, ?. Simulation of above system of ODE

The above system of ODE with two output, then the designed ANN with two neuron

in the output layer. In the hidden layer we use 15 neurons to ensure the output of llie

ANN coincide with numerical solution of the system as shown iti Figure (8),

Fig. 8.Solution curves of above system of ODE obtained with ANN and Runge-Kutta

TESCE, Vol.31, No.2
57

April, 2005

4. Conclusion
The dynamic systems are generally represented by either ODEs or PDEs. That is

why we propose an alternative method using feedforward ANNs to solve ODEs. To

test accuracy of this method, (he problems are also solved by either Runge-Kutta or

analytical methods. Then, the obtained results are graphically presented and

compared with each other. Figures show that the resuhs are in very close agreement.

Further more, we test the metliod for training point and outside the training points to

see approximate capability of the method for ODEs .

The architecture of the proposed ANN consists of one hidden layer varying its

neuron number to deal with highly non-linear problems. We successfully apply this

method to problems whose dynamics are represented by ODEs.

Consequently, this method can be used for wide ciass of linear and non-linear

ODEs. Therefore, it is general and easy to apply for numerical solutions of dynamic

problems.

References

[I] P.M. Lima, M.P. Carpcnlicr, Iterative methods for a singular boundary-value problem, J,
Comput, Appl. Math. IJ J (1999) 173-186.

[2"| H. Guoqiang, W. Jiong, K. Ilayami, X. Yueshcng, Correction method and extrapolation metliod
for singular two-point boundary value problems, J. Comput. Appl. Math. 126 (2000) 145-157.

[3] D. Kincaid, W. Cheney, Numerical Analysis, Brooks/Cole, Monterey, CA, 1991.

[A] K.S. Ycc, Numerical solution of initial boundary value problems involving Maxwell's equation
in isolropie media, IEEE Trans. Antennas Propagation AP-14 (1996) 302-307.

[5] P. Hunter, A. Pullan, FEM/BEM Notes, Department of Engineering Science, The University
of Auckland, New Zealand, 1997.

[6] M A Kolbehdari, M.S. Nakhla, M.N.O. Sadiku, Hybrid model of scatteringfrom eccentrically
nested dielectric cylinders, J. Franklin Inst. 225B (]999) 43-51.

[7] G. Jacobsohn, A discrete Taylor scries method for the solution of two-point boundary-value
problems, J. Franklin lust. 33S (2001)61-68.

[S] Y, Guoyou, WJ. Mansur, J.A.M. Carter, L. Gong, Stability of Galerkin and collocation time
domain boundary element methods as aoolied to the scalar wave equation Comput Struct 74 o __ '
TESCE, Vol.31, No.2 A n H , , . „«

(2000) 495-506.

[9] L. Meirovitch, TJ. Stemple, A new approach to the modeling of distributed structures for
control, J. Franklin Instit. 338 (2001) 241-254.

[10] W-S. Lee, Y-H. Ko, C-C. Ji, A study of an inverse method for the estimation of impulsive heat
flux, J .Franklin Inst. 337(2000) 661-671.

[] 1] J. Kouatchou, Parallel implementation of a high-order implicit collocation method for (he heal
equation, Math. Comput. Simul. 54 (2001) 509-519.

[12] B. Bialecki, G. Fairweather, Orthogonal spline collocation methods for partial differential
equations, J. Comput. Appl. Math. 128 (2001) 55-82.

[13] T. Nguyen-Thien, T. Tran-Cong, Approximation of functions and their derivatives: a neural
network implementation with applications, Appl. Math. Modell. 23 (1999) 687-704.

[14] S. He, K. Reif, R. Unbehauen, Multilayer neural networks for solving a class of partial
differential equations, Neural Networks 13 (2000) 385-396.

[15] C.L. Karr, 1. Yakushin, K. Nicolosi, Solving inverse initial-value, boundary-value problems via
genetic algorithm, Eng. Appl. Artif. Intell. 13 (2000) 625-633.

[16] N. Mai-Duy, T. Tran-Cong, Numerical solution of differential equations using multiqtiadriu
radial basis function networks, Neural Networks 14 (2001) 185-199.

[17] I.E. Lagaris, A. Likas, D.l. Fotiadis, Artificial neural networks for solving ordinary and partial
differential equations, IEEE Trans. Neural Networks 9(5) (1998) 987-1000.

[18] I.E. Lagaris, A. Likas, DXT. Papageorgio, Neural-network methods for boundary value
problems with irregular boundaries, IEEE Trans. Neural Networks 11 (5) (2000) 104 I-J 049.

[19] H. Lee and I. Kang, "Neural algorithms for solving differential equations,"./. Comput, Phys
vol. 91, pp. 110-117, 1990.

[20] L. Wang and J. M. Mendel, "Structured trainabic networks for matrix algebra," IEEE Int. Joint
Conf. Neural Networks, vol. 2, pp. 125-128,1990.

[21] R. Yentis and M. E. Zaghoul, "VLSI implementation of locally connected neural network for
solving partial differential equations," IEEE Trans. CircuitsSyst. I, vol. 43, no. 8 pp 687-
690, 1996.

[22] A. J. Meade, Jr., and A. A. Fernandez, "The numerical solution of linear ordinary differential
equations by feedforward neural.networks," Math. Comput. Modeling, vol. 19, no. 12 pp. 1-
25, 1994.

[23], "Solution of nonlinear ordinary differential equations by feedforward neural networks," Math
Comput. Modeling, vol. 20, no. 9, pp. 19-44, 1994.

[24] J.W. Plines, Fuzzy and Neural Approaches in Engineering MATLAB Supplement, Prentice-
Hall, Englewood Cliffs, NJ, 1997.

CD
nr^c-^P v . m * u i Anril.2005

