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Abst rac t 

This paper presents an intelligent approach based on artificial neural networks 

(ANN) to obtain numerical solutions of the mathematical models of dynamical 

system, that are represented by ordinary differential equations (ODEs) wilh initial 

value. The intelligent approach consists of two phases. The first phase focuses on 

developing a simulation model of the given ODE for obtaining an approximate 

solution. The second phase concentrated on linking the simulation model with a 

feedforward ANN containing adjustable parameters (weights) . Such (hat the outpul 

of the first phase is used as a target of the ANN to train it. Hence we obtain ANN 

represent the solution of ODE. The applicability of this approach ranges from single 

ordinary differential equations (ODEs) , to a system of coupled ODEs. The method is 

illustrated by solving a variety of problems and present comparative study with (he 

solution obtained by classical methods. 

Keywords: Initial value problem; Artificial neural networks; Simulation; 

Backpropagation algorithm. 

1. Introduction 

Most problems in science and engineering are represented by a set of differential 

equations (DEs) tlirough the process of mathematical modeling. Analytic solutions of 

die developed mathematical models based on physical laws may not be always 

possible. In addition, analytical methods are generally inadequate to obtain closed 

form solutions of the considered problems. The most used numerical methods 
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developed for solving DEs include finite difference method, finite element method 

(FEM), and boundary element method (BEM) [1-12]. Enormous progress in the field 

of numerical solutions of ordinary differential equations (ODEs) has been developed 

in the last three decades. However, these methods still based on some discretization 

of the domain of analysis into a number of finite elements. 

Artificial neural networks is considered as an approximation scheme where the 

input data for the design of a network consists of only a set of unstructured discrete 

data points. Different strategies were developed for solving ordinary differential 

equations (ODEs) by using feedforward artificial neural networks (ANNs) [13-18]. 

Some of them produce a solution in the form of an array that contain the value of 

the solution at a selected group of points. Other used basis function to represent the 

solution in the analytic form and transform original DE to a system as algebraic 

equations. Many research works in solving (DEs) using ANNs are restricted to the 

case of solving the system of algebraic equations which result from the discretization 

of (he domain. The solution of a linear system of equations is mapped into the 

architecture of Hopficld neural network, The minimization of the networks energy 

function provides the solution to the system of equations[19], [20], [21]. 

Another approach to the solution of (DEs) based on the fact that certain types of 

splines, for instance /?,-splines, cab be derived by superposition of piecewise linear 

activation function [22], [23]. The solution of differential equation with intial value 

using /?, - splines as basis functions, can be obtained by solving a system of linear or 

nonlinear equations in order to determine the coefficient of splines. Such a solution 

form is mapped directly on architecture of feedforward neural network by replacing 

each spline with the sum of piecewise linear activation functions that correspond to 

the hidden unit. This method considers local basis-functions and in general requires 

many splines (and consequently network parameters)to yield accurate solutions.In 

other study [16], the numerical solutions of linear ODEs have been obtained by using 

multiquadralic radial basis function networks (RBFNs). The mentioned methods with 

different networks architectures give good results for specific class of ODEs 

However, none of them has produced general closed forcn solution. For the closed 



form solution of DEs, Lagan's et al. [17] have, first, proposed and given comparisons 

with solutions obtained from Galerkin FEM to present performance of their method. 

Then, the same authors [18] have developed their method using ANN s with RBFNs. 

In this paper, an intelligent methodology is developed to solve ODEs that relies 

on the function approximation capabilities of feedforward ANNs. The intelligent 

methodology consists of two phases. The first phase focuses on developing a 

simulation model of the given ODEs for obtaining an approximate solution. The 

second phase concentrated on Jinking the simulation model with a fcedibavard ANN 

with adjustable parameters (weights) such that the first phase is used as a target of 

the ANN to train it Hence we obtain ANN represent the solution of ODE, This 

feedforward ANN is with one hidden layer varying the neuron number in the hidden 

layer according to complexity of the considered problem. The ANN has an 

appropriate architecture that is trained with backpropagation algorithm. This method 

uses feedforward neural networks with one hidden layer in which varies the neuron 

number as a basic approximation element, whose weights and biases are adjusted to 

minimize an error function. Optimization techniques requiring tiic calculation of the 

gradient of the selected error function w.r.t. the network parameter are used to train 

the network. 

The use of simulation and ANN to solve the ODE has many attractive features 

such as: 

1- The solution presents a very good generalization properties. 

2- Less number of parameters are required than the other solution techniques. 

Therefore, it requires low memory space. 

3- The proposed solution method is capable of applying both ODEs and PDEs. 

The remainder of this paper is organized as follows: In section 2, we introduce the 

prposed feedforward ANN structure and backpropagation training algorithm 

schemeJn section 3, we proposed solutions for different example of ODEs. The 

obtained results are also graphically presented and some conclusive remarks are give, 

All computer programs developed in this paper have been performed by using 

MATLAB. Finally, section 4, concludes the paper. 



% The feedforward artificial neural network 
A typical feedforward neural network (FFNN) consists of a number of layers of 

neura! units. Every neural unit in a layer is interconnected to every unit in the 

adjacent JayersThe strength of every interconnection is characterized by its weight. 

Information propagates from the input layer (first layer) to the output layer (last 

layer). Each neural unit weights the input it receives from the units in the previous 

layer using the appropriate interconnection weight. Subsequently, the sum of the 

inputs weighted is filtered through a transfer function to produce an output from the 

unit . The outputs from the output layer represent the final prediction of the neural 

network Figure (1). Training of the neural network is done by systemically adjusting 

the interconnection weights to minimize the error such that the predicated output 

from the network is as close as possible to the desired output. Several methods are 

used to minimize the error; for example, it is possible to use either steepest descent 

(i.e. the back propagation algorithm or any of its variants), or conjugate gradient 

method . 

Fig. 1. Neural network with one hidden layer 

2.1 Learning of artificial neural networks 

Learning of ANN is an algorithm for adjusting the network weights w,. to 

minimize the difference between the actual outputs (9, and the desired output T 

We can define an error function to quantify this difference 
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This is known as the total squared error summed over all output unit ,/ and all 

training patterns p. 

The aim of learning is minimizing this error by adjusting the weight IVtf .Typically, 

we make a series of small adjustments to the weights Wti —> Wy-f Aft7. until (he 

error EQVfj )is 'small enough' 

To minimize the error function (3) we use a series of gradient decent weight updates 

If the transfer function for the output neuron i s / {x), and the activations of the 

previous layer of neurons are z t, then the output are Oj = / $^ ,w tJ ana 

tWkt=-Tl 8 w* (3) 

After repeated application of the chain rule, and some tidying npy we end up with a 

very simple weight update equation: 

We use a differentiablc activation function such as sig/noid firnction in the bidden 

layer <r(z) = — - — . Due to the properties of the sigmoid derivative, (he general 

weight update in equation (4) simplifies so that it only contain neuron activations and 

no derivative 

p 

Equation (5) is known as the generalized Delta Rule for training for feedforward 

ANN with sigmoid activation function. 

3. Solution of differential equations 

In this section, we consider a solution of some problem modeled by ODEs to 

illustrate the efficiency of the proposed method. In all case we VSQ a feedforward 
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ANN with three layers, having sigmoid activation function in the hidden layer but 

linear activation function in the outout layer. The ANN is trained by using 

backpropagation algorithms. To test accuracies of this method,the examples are also 

solved by either Runge-Kutta or analytical methods. Then, the obtained results are 

graphically presented and compared with each other. Further more,we test the method 

for training point and outside the training points to see approximate capability of the 

method for ODEs. 

3J Solution offirsi-order differential equaiions(ODEs) 

To illustrate the method, we consider the first-order OED as follows: 

^ U j C - * 2 , /6[0,1] 
dt 
x(0) = 0.5 

In the first phase we construct a simulation model of the given ODE as shown in the 

Figure (2). 

^ Integrator To Workspace 

Piaduct 

Fig. 2. ODE simulation (first phase) 

The second phase is (he design and train a feedforward ANN that have the following 

steps: 

1- Initialize the ANN parameters(weights and biases). 

2- Define the parameters associated with the algorthm like error goal,learning 

rate, maximum number of epochs(iterations),etc. 

3- Call the teaching algorithm (output of the simulation phase) to train a 

feedforward ANN. 
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The network output and the solution obtained from Runge-Kutta method are 

shown in Figiue (3), we note that the solution curves obtained from the both methods 

abnost coincide with each other.Moreovcr, we can find from the network the solution 

points of the ODE in the outside of the training interval. 

* * * * * 
^ V * * ^ 

0 0.5 1 
j-%foiiialrifo'-; [ 

Fig. 3. Solution curves of 1st order ODE obtained with ANN nrul Ruiigc-KuUa 

3.2 Solution of second-order differential eqnationsfODEs) 

In this ODE ,we consider mass-damper-spring system whose mathematical model is 

d2x dx 
m dt dt + lcx =0 

where x(0) = J, ^ U £ = 0 with t e [0,2] 
dt 

m=c=k=l 

put x = xx ,x =x2 

Then 

The simulation model of this second ODE is shown in the figure ( 4 ) 

xk=x2 

X2
 = ~X l — X 2 
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fid Fig. 4. Simulation of the above 2" order ODE 

Similar as lat order ODE we design ANN to present the solution of above ODE. 

The network output and the solution obtained from Runge-Kutta method are shown 

in the Figure (5), we note that the solution curves obtained from the both methods 

almost coincide witli each othei\Moreover,we can find from the network the solution 

points of the ODK in the outside of the training interval 

O Noun-il 
Rungu-kulla 

G D.2 0.4 0.6 0.0 
Slllft \t,tnrtj I 

t 1.2 1.4 1.6 IB 2 

Fig. 5. Solution curves of 2m! order ODE obtained with ANN and Runge-Kutta 

3.3 Solution for a system of ordinary differential equations 

Let x,=x2 

X2=Xi{l-X*)-X 

Where *,(()) = ] ,x2(0) = I 

The simulation model of (his system of ODE is shown in Figure (7) 
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Fig, ?. Simulation of above system of ODE 

The above system of ODE with two output, then the designed ANN with two neuron 

in the output layer. In the hidden layer we use 15 neurons to ensure the output of llie 

ANN coincide with numerical solution of the system as shown iti Figure (8), 

Fig. 8.Solution curves of above system of ODE obtained with ANN and Runge-Kutta 
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4. Conclusion 
The dynamic systems are generally represented by either ODEs or PDEs. That is 

why we propose an alternative method using feedforward ANNs to solve ODEs. To 

test accuracy of this method, (he problems are also solved by either Runge-Kutta or 

analytical methods. Then, the obtained results are graphically presented and 

compared with each other. Figures show that the resuhs are in very close agreement. 

Further more, we test the metliod for training point and outside the training points to 

see approximate capability of the method for ODEs . 

The architecture of the proposed ANN consists of one hidden layer varying its 

neuron number to deal with highly non-linear problems. We successfully apply this 

method to problems whose dynamics are represented by ODEs. 

Consequently, this method can be used for wide ciass of linear and non-linear 

ODEs. Therefore, it is general and easy to apply for numerical solutions of dynamic 

problems. 
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