

المؤتمر الدولي العلمي الحادي عشر للهندسة الكيميائية الخضراء حول "أثر تحولات الطاقة على حماية البيئة في ظل تحقيق أهداف التنمية المستدامة" 10 - 03 يوليو 2024 القاهرة – جمهورية مصر العربية

المنظمة العربية للتنمية الإدارية - جامعة الدول العربية

Application of the solar cells in CNG stations

- 1. Introduction
- 2. Feasibility studies of the solar cells in CNG stations
- 3. Energy conservation and emissions reduction
- 4. Conclusion

المرتبعين المرتبعين المحكمة المحريثية المرابعة جامعة الحول العربية

• GASTEC is the pioneering C

• GASTEC is the pioneering Company in the field of adopting CNG as an alternative fuel in vehicles in Egypt and Middle East since more than 25 years. The Company owns the largest fueling stations network in Egypt as it has about 360 station, all over Egypt with a large base of compressors with different capacities as well number of stations under-construction. Also, it owns vehicles conversion centers to run by CNG that work with different capacities. In addition to specialized CNG Cylinder Testing Centers. It is noteworthy that the Company ranks the first among the NGV companies in Egypt attaining the highest market share.

• Gastec is one of the companies in the Petroleum Sector that applies the Sustainable Development goals (SDGs), as it applies, according to its activities a number of goals, including the Goal no. (7) which is "Affordable and clean energy" and the goal no. (13) which "climate action", so, GASTEC decided to use the solar energy as one of the energy sources inside its stations.

BUREAU VERITAS

Certification Veritas Bureau

EGYPTIAN INTERNATIONAL GAS TECHNOLOGY(GASTEC) Address: FIRST SECTION FROM 90TH ST - BESIDE downtowen mall - 5th settelment - new cairo

Bureau Veritas Egypt certify that the Management System of the above organisation has been audited and found to be in accordance with the requirements of the management system standards detailed below.

ISO 50001 :2018

Scope of certification

SCOPE : MANAGING & OPERATING CNG AND GASOLINE FUELLING STATIONS. VEHICLE CONVERSION, MAINTENANCE AND CYLINDER TESTING CENTRES BOUNDRY: The energy system boundary covers the company Headquarters (Gastech H.Q) and El-Abbassia station, and Al-Salam Station Location

Original cycle start date:	17 th December 2023
Expiry date of previous cycle:	NA
Certification Audit date:	14th December 2023
Certification cycle start date:	17th December 2023

Subject to the continued satisfactory operation of the organization's Management System, this certificate expires on: 16th December 2026

Certificate No. EGY.23.004 E/EnMS Version: No.1 Issue date: 17th December 2023

GASTEC Energy Management Policy

Egyptian International Gas Technology (GASTEC) is a leading company in the field of adopting CNG, as an alternative fuel in vehicles in Egypt, as it owns the largest network of CNG stations.

GASTEC designs, constructs and operates fueling stations with compressed natural gas (CNG) & liquid fuel and vehicles conversion and maintenance centers to work by the dual fuel system (CNG/Gasoline-CNG/Diesel), in addition to transporting CNG to commercial and industrial facilities and CNG cylinder testing centers countrywide.

GASTEC'S ISO 50001 Energy Management System Policy is consistent with the company's vision and supports its strategic directions through addressing energy issues within sustainable development standards that rationalize energy consumption with the purpose to reduce gas emissions in order to contribute to limit climate change . It is also integrated and overlapped with the company's business operations.

In order to accomplish these tasks achieve the goals of energy management related to its activities, and to control its use and management, GASTEC is committed to developing, applying, maintaining and improving the energy management system, by committing to the following:

- > Ensure the compliance with the laws and legislations related to energy and other needs related to the use, consumption and efficiency of energy within the company.
- > Work to reduce energy consumption, control its use, and reduce the negative effects resulting from its consumption by defining energy uses, especially those that consume energy in large quantities(significant energy uses) in order to ensure the optimal use of energy resources, which leads to improving energy performance.
- Set the objectives for the Energy Management System, review them periodically and work to achieve them with the aim of continual improvement and stimulating energy saving.
- Provide information, human resources, materials and other resources necessary to implement the energy management system and achieve its objectives
- Develop and evaluate energy efficiency performance indicators in order to continuously assess the effectiveness of the energy management system.
- Provide, implement and develop training and awareness programs for the energy management system within the company and those that ensure the training of everyone directly related to the energy management system.
- Support the procurement of energy-saving products, equipment and services that have a positive impact on the performance of the energy management system.
- Commitment to take into account opportunities to improve the performance of the energy management system and process control when designing new or modified activities, facilities or equipment.
- Commitment to continual improvement of the energy management system by improving the company's energy performance
- Document, periodic review and disseminate the energy policy and information related to energy efficiency internally to all employees of the company and externally to all individuals and interested parties, ensuring the understanding of the policy and encouraging effective decision-making to improve energy performance.

10D. FORDAM

Eng./ Abdelfattah Farahat Chairman & Managing Director

Copy No:

المنظمة العربية للتنمية الإدارية - جامعة الدول العربية

www.gastec-egypt.com

- PV Systems in Egypt
- Egypt is located in the sun belt of the earth, thereby receiving abundant solar energy that can be usefully harnessed with an annual average of direct solar radiation of about 2000-3200 kWh/m2/year

WWW.ENSEG.ORG

Annual average of direct solar radiation on Egypt. (http://www.nrea.gov.eg/annual2012-2013.pdf).

• Objective of the study

The main objective of this study is to present how GASTEC used the canopies and the roof of the administrative buildings, which is considered as dead areas in conducting green energy represented in the form of solar energy, also it illustrates the energy conserved and the quantity of carbon dioxide reduced from the usage of the solar energy

• CNG stations

As a result of high demand for converting vehicles to run on natural gas, and also, it's one of the government's requirements to reduce the demands for petroleum products, there was an increase in constructing and operating CNG stations, that consume a large amount of electricity. CNG Stations consume approximate 1200 MWH/YEAR

Feasibility studies of the solar cells in CNG stations

Technical studies of the solar cells in CNG stations

PVSYST V6.83Ever Green Energy(EGE) (Egypt)11/09/19Page 3/5Crid-Connected System: Main resultsSimulation variant:Gastec-TANTA SolverSimulation variant:SolverTables on a building 100 MVPMain system parameters: PV Field Printmation PV Field Printmation <b< th=""><th></th><th></th><th>1.1.1.1</th><th></th><th>N 607</th><th></th><th></th><th>_</th><th></th><th></th></b<>			1.1.1.1		N 607			_				
Conducted System: Main resultsProjectGaste-TANTA SystemSimulation variantBoxManagementBystem variantParsona participation by modules by modules terrer user mediaDifference participation by modules ModelManagementDifference participation by modules by modules ModelDifference participation by modules by modules Difference participation Promodules Difference participation Promodules Difference participationDifference participation promodules Difference participation Promodules Difference participation Difference participationDifference participation promodules Difference participation Difference participation Promodules Difference participationDifference participation promodules Difference participation Difference participation Promodules Difference participationDifference participation Promodules Difference participation Difference participation Promodules Difference participationDifference participation Promodules Difference participation Difference participationDifference participation Promodules Difference participationMain single participation Difference participationDifference participation Difference participation Difference participationDifference participation Difference participation Difference participation Difference participation Difference participationMain single participation Difference participationDifference participation Difference participation Difference participationDifference participation Difference participation Difference participation Difference participation Difference parti	PVSYST V6.83	VSYST V6.83 Ever Green Energy(EGE) (Egypt) 11/09/1										
Project : Gastec-TANTA Simulation variant : BokW Main system paraeters System type Tables on a building Near Shadings Do of modules Bornation Of the station o		c	Grid-Co	nnected \$	System	n: Main r	esults					
Simulation variant: 80kW Main system parameters System type Theid Orientation PV modules System type Tables on a building azimuth 30° azimuth 30° azimuth 30° bio of modules Development total 30° bio of modules Main system Production Produced Energy Deformance Ratio Production Tables on a building Development total 30° bio of modules Development total 30° bio of modules Main system Production Produced Energy Deformance Ratio Production Tables on a building Development total 30° bio of modules Specific prod. 1733 kWh/kWp/year Main system Productions (per installed kWp): Nominal power 80.9 kWp Deformance Ratio Production Tables on a building Performance Ratio Production Tables on a building Mummalized productions (per installed kWp): Nominal power 80.9 kWp Deformance Ratio Production Tables on a building Tables on a building Mummalized productions (per installed kWp): Nominal power 80.9 kWp Deformance Part Produced Energy Deformance Part P	Project :	Gaste	C-TANTA									
Main system parameters System type Tables on a building Near Shadings PV Field Orientation PV modules Linear shadings Model 30° azimuth 0° 0° System type Model 30° azimuth PLUMAX Phorm Phorm 0° Main simulation results Model Model 10° Phorm 400 Wp System Production Produced Energy Performance Ratio PR 138.7 MWh/year Specific prod. 1733 kWh/kWp/year Normalized productions (per installed kWp: Nominal power 80.0 kWp Performance Ratio PR 1733 kWh/kWp/year Variation 10° 10° 10° 10° Model 10° 10° 10° 10° Main simulation results 10° 10° 10° 10° System Productions (per installed kWp: Nominal power 80.0 kWp 10° 1733 kWh/kWp/year Normalized productions (per installed kWp: Nominal power 80.0 kWp 10° 10° 10° Status 10° 10° 10° 10° 10° 10° Status 10° 10° 10° 10° 10° 10° Model 10° 10° 10° 10° 10° 10° Model 10° 10° 10° 10° 10°	Simulation variant	t: 80kW	r									
Noar Shadings PV Field Orientiation PV modules Inverter User's mediaLinear shadings Model Model Model Model Model30° TALLMAX Pnom to 30° Pomot to 40° Pomot to	Main system param	eters		System type	Tables	on a buil	ding					
PV Field Orientation PV modules PV Array Inverter User's needs Model Unlimited load (grid) Main simulation results System Production Produced Energy Performance Ratio PR 138.7 MWh/year Produced Energy Performance Ratio PR 138.7 MWh/year Specific prod. 1733 kWh/kWp/year Performance Ratio PR Performance Ratio PR Perform	Near Shadings		Lin	ear shadings								
PV modules PV aray Inverter User's needs Main simulation results System Production Main simulation results System Production Main simulation results Produced Energy Performance Ratio PR Produced Energy Performance Ratio PR Performance Ratio PR Performance Ratio PR Produced Interview Performance Ratio PR Produced Interview Produced Interview Performance Ratio PR Produced Interview Produced	PV Field Orientation			till	30°		azi	muth 0°				
PV Array Inverter Nb. of module Unlimited load (grid) 200 Pnom total Blueplanet 92.0 TL3-INT 80.0 kWp 92.0 kW ac Main simulation results System Production Produced Energy Performance Ratio PR 138.7 MWh/year Specific prod. 1733 kWh/kWp/year Normalized productions (per installed kWp): Nominal power 80.0 kWp Normalized productions (per installed kWp): Nominal power 80.0 kWp Performance Ratio PR Image: Produce production (per installed kWp): Nominal power 80.0 kWp Performance Ratio PR Image: Produce PR Image: Produce PR Image: Produce PR Image: Produce PR Performance Ratio PR Image: Produce Production (per installed kWp): Nominal power 80.0 kWp Image: Produce PR Image: PR </td <td>PV modules</td> <td></td> <td></td> <td>Mode</td> <td>TALLM</td> <td>AX</td> <td>F</td> <td>nom 40</td> <td>0 Wp</td> <td></td>	PV modules			Mode	TALLM	AX	F	nom 40	0 Wp			
Inverter Model Blueplanet 92.0 TL3-INT Pnom 92.0 kW ac Main simulation results Produced Energy Performance Ratio PR 138.7 MWh/year Specific prod. 1733 kWh/kWp/year Normalized productions (per installed kWp): Normalized productions (per installed kWp): Normalized production Performance Ratio PR Performance Ratio PR Output Image: Production for the pr	PV Array		N	b. of modules	200		Pnom	total 80	.0 kWp			
User's needs Unlimited load (grid) Main simulation results Produced Energy Performance Ratio PR 138.7 MWh/year Specific prod. 1733 kWh/kWp/year Normalized productions (per instaled kWp): Nominal power 80.0 kWp Performance 70.0 kWp Performance Ratio PR 138.7 MWh/year Specific prod. 1733 kWh/kWp/year Normalized productions (per instaled kWp): Nominal power 80.0 kWp Performance Ratio PR Performance Ratio PR Performance Ratio PR Normalized productions (per instaled kWp): Nominal power 80.0 kWp Performance Ratio PR Performance Ratio PR Normalized productions (per instaled kWp): Nominal power 80.0 kWp Performance Ratio PR Performance Ratio PR Normalized productions (per instaled kWp): Nominal power 80.0 kWp Performance Ratio PR Performance Ratio PR Normalized production of the producti	Inverter			Mode	Bluepla	net 92.0 TL	3-INT P	nom 92	.0 kW ac	2		
<figure><figure>Main segmentationProduced for Ration13.7 mm modeSpecific yang13.8 mm modeNomilized productions (per instande Wp):Nomilia power 90.9 WPImage: Specific yangImage: Specific yangPerformance Ration yangImage: Specific yang<td>User's needs</td><td></td><td>Unlimit</td><td>ed load (grid</td><td>)</td><td></td><td></td><td></td><td></td><td></td></figure></figure>	User's needs		Unlimit	ed load (grid)							
System ProductionProduced Energy Performance Ratio PR138.7 MWh/year 77.30 %Specific prod.1733 kWh/kWp/yearNormalized productions (per installed kWp):Normal power 80.0 kWp up <td>Main simulation res</td> <td>ults</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Main simulation res	ults										
Normilized productions (per installed Wij): Normal power 8.0. WPPeromace RatioImage: Construction of the production of the producti	System Production		Produ Performa	nce Ratio PR	138.7 77.30 9	MWh/year %	Specific	prod. 17	'33 kWh/	kWp/year		
$\frac{1}{10000000000000000000000000000000000$	Normalized productions	Normalized productions (per installed kWp): Nominal power 80.0 kWp Performance Ratio PR										
Bokw Balances and main results GlobHor ClobInc GlobEff EArray E_Grid PR kWh/m² kWh/m² c kWh/m² kWh/m² MWh MWh January 101.6 37.20 13.93 151.7 135.7 9.72 9.51 0.784 February 116.8 44.22 14.71 153.9 141.2 10.08 9.86 0.801	FR: Performance Rate (VI/V): 0.773 Jun Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec											
Balances and main results Balances and main results Bit Bit <td colspan="12">80kW</td>	80kW											
GlobHor kWh/m ² DiffHor kWh/m ² T_Amb or kWh/m ² GlobInc kWh/m ² GlobEff kWh/m ² EArray MWh E_Grid MWh PR January February 101.6 37.20 13.93 151.7 135.7 9.72 9.51 0.784 January 116.8 44.22 14.71 153.9 141.2 10.08 9.86 0.801				Balances ar	d main re	esults						
kWh/m² kWh/m² °C kWh/m² kWh/m² MWh MWh January 101.6 37.20 13.93 151.7 135.7 9.72 9.51 0.784 February 116.8 44.22 14.71 153.9 141.2 10.08 9.86 0.801		GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR			
January 101.6 37.20 13.93 151.7 135.7 9.72 9.51 0.784 February 116.8 44.22 14.71 153.9 141.2 10.08 9.86 0.801		kWh/m ²	kWh/m ²	°C	kWh/m ²	kWh/m ²	MWh	MWb	1			
February 116.8 44.22 14.71 153.9 141.2 10.08 9.86 0.801	January	101.6	37.20	13.93	151.7	135.7	9.72	9.51	0.784			
	February	116.8	44.22	14.71	153.9	141.2	10.08	9.86	0.801	i		

	kWh/m ²	kWh/m ²	°C	kWh/m ²	kWh/m ²	MWh	MWb	
January	101.6	37.20	13.93	151.7	135.7	9.72	9.51	0.784
February	116.8	44.22	14.71	153.9	141.2	10.08	9.86	0.801
March	165.7	61.31	17.83	192.9	177.3	12.44	12.17	0.788
April	194.7	71.31	20.77	202.3	185.0	12.90	12.62	0.780
May	227.5	74.41	24.43	214.2	195.6	13.45	13.16	0.768
June	235.3	68.57	27.03	211.1	192.7	13.15	12.86	0.762
July	238.1	68.04	29.05	218.1	199.4	13.51	13.22	0.758
August	217.5	66.45	29.05	216.2	198.0	13.38	13.10	0.758
September	181.1	54.77	26.76	202.7	186.7	12.68	12.41	0.765
October	147.1	53.58	23.84	186.3	171.4	11.81	11.56	0.776
November	107.0	37.38	19.44	153.1	139.3	9.73	9.52	0.777
December	93.0	37.40	15.62	140.0	124.3	8.87	8.68	0.775
Year	2025.4	674.64	21.91	2242.5	2046.5	141.73	138.68	0.773
Locande: Globb	- Horiza	intal alabal im	adiation		GlobEff	Effective Cle	hal corr for	IAM and chadi
Dispersional global infactation Globelin Effective Global, cont. for Jun an								
			I COLUMN TO DE LA COLUMN					

E_Grid

DiffHor Horizontal global Irrad DiffHor Horizontal diffuse irra T_Amb Ambient Temperature Global incident in coll.

Effective Global, corr. for IAM and shadin Effective energy at the output of the arra Energy injected into grid Performance Ratio

Feasibility studies of the solar cells in CNG stations

Financial studies of the solar cells in CNG stations(NET Metering system)

Station	Tanta stations								A EC	Accum GP (10	ulate 0% 1	d Cas 6 EGF	sh ?/\$										
Total power generated	80 KW	6,000,000																					
KWP		4,000,000																					
Сарех	EGP 1,152,000 LE	3,000,000 2,000,000 ਵ														_	~						
NPV	EGP 1,946,698.20	1,000,000 0										~	~	~									
IRR	26%	-1,000,000		_			-	~	*														
Payback period	5 YEARS	-2,000,000 -3,000,000					<u> </u>		0	10	1 (2)	12		15	16 17	10	10	20	21	22 2	2 2.		
		Accumulated Cash	-1,880 -1,72	3 -1,569	4 -1,404 -	5 1,231 -1	ь / 052 -865,	8) -669,7 -	9 466,1	-253,8 -3	.1 12	13	14 689,85 9	15	16 17 224, 1,50	, 18)8, 1,805	19 5, 2,114	20 4, 2,436,	21 2,772, 3	,123, 3,4	3 24 88, 3,869	25 9, 4,266,	4,680

المنظمة العربية للتنمية الإدارية - جامعة الدول العربية

Feasibility studies of the solar cells in CNG stations

Financial studies of the solar cells in CNG stations(NET Metering system)

Station	Tanta stations	Accumulated Cash EGP (100% 49 EGP/\$
Total power generated KWP	80 KW	12,000,000 10,000,000 8,000,000
Сарех	EGP3,136,000	6,000,000 4,000,000
NPV	(EGP 1,369,005.49)	2,000,000
IRR	13%	
Payback period	11 YEARS	-4,000,000
		-6,000,000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Accumulated Cash FGP (100% 49 FGP/5) -3,920 -3,600 -3,266 -2,918 -2,555 -2,177 -1,783 -1,372 -943,4 -496,5 -30,50 455,38 961,99 1,490, 2,040, 2,615, 3,213, 3,838, 4,489, 5,167, 5,875, 6,613, 7,382, 8,184, 9,020, 9,897

The Energy conservation and emissions reduction

Application of the solar cells in CNG stations

GASTEC had been constructed (7) PV projects in (7) stations starting from 2019 with total cost approximately

about 7.5 million EGP with total power generated approximately 472.8 KWP and approximately energy yield

862.860 MWH /Year and Reduce CO2 emissions 690.3TON /Y, which is illustrated as following:

Station's name	Total power generated KWP	% of total power required	Actual power generated KWH/year	Quantity of CO2 reduced Ton/year	
Qena 1	25	5%	45625	36.5	
Port Saied	92.8	15 %	169360	135.5	
Tanta	80	13%	146000	116.8	
Abbasia	45	7%	82125	65.7	
Qena 2	50	60%	91250	73	
Asyut	100	16%	182500	146	
Damietta	80	13%	146000	116.8	

The Energy conservation and emissions reduction

GASTEC solar cells construction plan

• The plan in 2024, is to establish 8 stations with the total power 295 KWP and approximate energy yield 538.375 MWH /Year which Reduce CO2 emissions 430.7 TON /Y

• Solar Energy is one of many sources of renewable energies that can be exploited in generating electricity as a green energy. GASTEC decided to empower the stations by solar power system implementing the Egypt's government trends in applying the Sustainable Development Goals. GASTEC also, it intends to complete this objective by implementing the solar cells in its other stations according to its criteria. By implementing solar power system GASTEC and the government will be benefited as government do not requires to invest, and more reduction in GHG and also, GASTEC saves the partial cost of energy reducing its indirect GHG emissions.

Thanks

المنظمة العربية للتنمية الإدارية - جامعة الدول العربية

Thank you